f _Il .. CENTRE NATIONAL
Llsviversin DE LA RECHERCHE
N (WaL SCIENTIFIQUE

BOSER =aspiilh AMY

LABORATOIRE

sophia antipolia

INFORMATIQUE, SIGNAUX ET SYSTEMES
DE SOPHIA ANTIPOLIS
UMR 6070

A MIDDLEWARE FOR UBIQUITOUS COMPUTING: WCOMP

Jean-Yves TIGLI, Michel RIVEILL, Gaétan REY, StéphaneR@VITE, Vincent
HOURDIN, Daniel CHEUNG-FOO-WO, Eric CALLEGARI

Projet RAINBOW

Rapport de recherche
ISRN I3S/RR-20081-FR

January 2008

Laboratoire d’'Informatique de Signaux et Systémes de Sophia Antipolis - UNSA-CNRS
2000, rte.des Lucioles — Les Algorithmes — Bat Euclide B — B.P. 121 — 06903 Sophia-Antipolis Cedex — France
Tél.: 33 (0)4 92 94 27 01 — Fax: 33 (0)4 92 94 28 98 — www.i3s.unice.fr
UMRG6070

A Middleware for Ubiquitous Computing: WComp

Jean-Yves TIGLI', Michel RIVEILL', Gaétan REY!, Stéphane LAVIROTTE!
Vincent HOURDIN', Daniel CHEUNG-F0O-Wo0?!, Eric CALLEGARI!, *

{tigli, riveill, rey, lavirott, hourdin, cheung, callegar}@polytech.unice.fr

! Laboratoire I3S, (Université de Nice - Sophia Antipolis / CNRS)
Batiment Polytech’Sophia - SI 930 route des Colles
B.P. 145 F-06903 Sophia-Antipolis Cedex
2 CSTB 290, route des Lucioles, BP209 06904 Sophia-Antipolis

Abstract

After a survey of the specific features of ubiquitous computing applications and corresponding middle-
ware requirements, we list the various paradigms used in the main middlewares for ubiquitous computing
in the literature. We underline the lack of works introducing the use of the concept of Aspects in mid-
dleware dedicated to ubiquitous computing, in spite of being used for middlewares improvement in other
domains. Then we introduce our WComp middleware model which federates three main paradigms:
event based web services, a lightweight component-based approach to design dynamic composite services
and an adaptation approach using the original concept called Aspect of Assembly. These paradigms lead
to two ways to dynamically design ubiquitous computing applications. The first implements a classical
component-based compositional approach to design higher-level composite Web Services and then allow
to increment the graph of cooperating services for the applications. This approach is well suited to design
the applications in a known, common and usual context. The second way uses a compositional approach
for adaptation using Aspect of Assembly, particularly well-suited to tune a set of composite services in
reaction to a particular variation of the context or changing preferences of the users. Having detailed As-
pect of Assembly concept, we finally comment results indicating the expressiveness and the performance
of such an approach, showing empirically that principles of aspects and program integration can be used
to facilitate the design of adaptive applications.

Keywords: ubiquitous computing, web services for devices, event-based component middleware,
software composition.

1 Ubiquitous computing

We are standing on the brink of a new computing era, one that will fundamentally transform our computing
usages. In September 1991, Mark Weiser in [36] unveiled his vision of ubiquitous computing. He described
the future like a world where computing systems are available anywhere but not visible. Already, early forms
of ubiquitous computing are obvious in the widespread use of laptops and mobile phones. But how did we
get here?

Leaving the mainframe time, the society, motivated by desires of individualism, did migrate to a personnal
computing model. Supported by lot of technologies’ innovations, two majors ways, identified by Lyytinen
in [21], appear. Firstly, the mobility integrates the society way of life, and in the same time integrates
phones and computers. Secondly, a kind of technophobia or more precisely a society rebuttal in front of
the growing difficulty to use the new technologies did give birth to concept of integration. The computing
systems integration with the physical environment act toward to hide computing systems complexity and
diversity for end-users.

But beyond these criteria of mobility and integration, what are the ubiquitous computing challenges? The
principal challenge of ubiquitous computing is to resolve the new computing “multiple-multiplicity”. Indeed

*reverse alphabetically order

now many users can be using simultaneously many applications (fragmented in many pieces of software often
called services). These users interact with many devices to communicate with other people located in many
different physical places and environments.

In summary, we could identify three concepts concerning entities (users and devices) evolving in the new
ubiquitous world. The entities mobility is the first concepts of the new world. It does describe motions
of users and of their devices. The second concept is the entities heterogeneity that outlines the diversity
between entities capabilities and also possibilities offered by various unknown functionalities of new smart
objects. Finally, the last concept is the environment high dynamicity. It does illustrate the ubiquitous world
entropy with its appearance and disappearance. As a result, future ubiquitous computing architectures
should implement these concepts to resolve ubiquitous computing challenges.

The scope of this paper can now be outlined briefly. (Sec. 2) We will first draw a state of the art on
middlewares for ubiquitous systems according to the most relevant criteria found in literature. (Sec. 3)
We then study paradigms used in the ubiquitous computing research field: services oriented architectures,
component-based software engineering, event-driven middlewares, and finally aspect-oriented programming.
(Sec. 4) From what we have learned about existing middlewares and paradigms characteristics, we defined
WComp, our lightweight component model, ubiquitous computing ready, using services to abstract devices
and context from the environment, and aspects for structural adaptation of dynamic applications. (Sec. 5)
We explain more deeply our aspect adaptation approach, called Aspect of Assembly. (Sec. 6) We then
validate our contributions, studying performances and complexity. (Sec. 7) Adaptation is either user-driven,
or context-driven. We explain used mechanisms for adaptation of applications. (Sec. 7) Use cases are finally
described, in ubiquitous computing environment. (Sec. 8) We summarize our approach of middleware for
ubiquitous computing and give directions for future works.

2 Approaches for adaptation in ubiquitous computing environ-
ments

Many middlewares have appeared in the ubiquitous computing world, and even more in pervasive or sen-
sors networks, dedicated to adaptat software architectures to context-changes. We start by listing relevant
middlewares dedicated to ubiquitous computing, and studying main characteristics of ubiquitous computing
systems. We will compare paradigms used in this field in the next section (Sec. 3) with the same character-
istics and requirements.

2.1 Requirements for middlewares for ubiquitous computing

Requirements and main characteristics of middlewares for ubiquitous computing were widely studied, in lots
of papers [23, 6, 24, 14]. They try to define basic requirements for such middlewares, which makes a long list
if we gather everything. We will only focus on a subset, which mostly refers to our works, and represents the
most relevant characteristics of ubiquitous computing middlewares.

Of course, all these middlewares support adaptation, but we distinguish two categories [6]: structure
changes or behavior changes. Structural adaptation consists in modifying an assembly of component while
preserving its behavioral-services. A behavioral-service describes a sequence of operations to be executed on
a particular component. Thus, a behavioral adaptation may, in some case, lead to the failure of the black-box
abstraction of components or services.

Heterogeneity is the ability to handle different programming language, OS, hardware or communication
protocols. Extensibility is the ability for an end-user to extend or modify the system easily. Scalability refers
to the ability for a system to grow in the future, to extend to higher load applications, or to a wider network.
Security can be an important concern in some applications, since ubiquitous computing may use private data
from the user. Some middlewares use authentication and authorization mechanisms to protect user data.

Reactivity is a key feature for pervasive or ubiquitous adaptive systems. If it has to react on context
changes, middleware have to handle some kind of event notification, like a publish/subscribe mechanism.
Mobility is of course handled by all ubiquitous middlewares, since they create application from mobile devices,
and a changing context. The Discovery of those devices is important too; it is better to discover dynamically
which device is in the environment than hard-code them beforehand. The last characteristic we will focus on

for the state of the art is Updating, which is the ability to update parts of the middleware, like components
or services at run-time.

[23] have isolated other charateristics to adaptive systems, like feasibility, which is a mechanisms handling
resource unavailability resulting in middleware functionalities that cannot be provided at some time. Since
ubiquitous systems are context-dependent, they have to deal with such concerns. Robustness is another
characteritic which should be handled by ubiquitous adaptive systems. Feasibility can be a part of it.
Execution environment moving, devices appearing/vanishing, errors rises must not affect middleware stability
and its capacity to adapt continuously.

2.2 Existing middlewares

We focus on a few middlewares approaches for ubiquitous computing, and we summarize in Table 1 how they
handle previous characteristics and requirements.

e GAIA [28] aims to provide middleware support for active space environments such as smart rooms and
living environments. It essentially provides a distributed operating system where all inputs, outputs
and processing units within a room are considered as a single computer. GAIA uses a component
repository and centralized approaches to events, and services discovery. Code can be updated replacing
components in the repository.

e ExORB [29] projects main aim is to contribute towards construction of configurable, updatable and
upgradable middleware services. It targets the mobile phone industry, thus mobility is explicitly ad-
dressed. Code updating is possible but requires human intervention to spread the changes. ExORB
uses IIOP and XML-RPC, enabling heterogeneity. Its software configuration can change at runtime,
implying an adaptability potential.

e CORTEX [35, 32] proposes a novel sentient object model to address the emergence of a new class
of application that operate independently of human control. Infrastructure-based and ad-hoc based
wireless environments are considered to address mobility. The middleware is highly configurable at
run-time. It reacts on events by changing the behavior of objects.

e Aura [17, 34] is a context-aware middleware which can be used to create mobile applications. It repre-
sents the user by its aura, like a Personal Area Network (PAN), and brings the appropriate resources
from the services of the environment to support the user’s task. Context changes are notified by events,
and tasks can change while context is evolving. It’s also interesting to note that it suspends tasks
which cannot be processed anymore due to a context change, storing their state for a future resume.
User location information is secured by a SPKI/SDSI (Simple Public Key and Simple Distributed Secu-
rity Infrastructures). Moreover, constraints can be expressed in task descriptions, and the middleware
restricts some of its operations in order to stop a violation if they are violated (on context for example).

e Oxygen [1] addresses human needs using speech and vision technologies that enable the user to com-
municate with it as if the user were interacting with a person. It enables pervasive human-centered
computing. It defines intelligent networks with dynamic topologies according to devices locations,
fixed and mobile devices with embedded software. Code can be automatically updated thanks to that.
Network rules can be specified to allow sets of users to use particular resources.

e SATIN [37] (Self-Adaptation Targeting Integrated Networks) argues that the application of logical
mobility primitives in a component system assists in building self-organizing mobile systems. They
define a component-based middleware, dynamically updatable, for example on context changes.

e DoAmlI [6] (DOmain-specific AMbient Intelligence) is a service-oriented middleware architecture. It
uses CORBA, which enables language heterogeneity handling capabilities and centralized discovery of
services. Depending on found services and the current context, DoAml interconnects them and set
them into running state.

e SCORPIO [8] proposes a work about structural adaptation of software components. It re-structures
components in order to match heterogeneous structures when integrating new components. Moreover,

they propose to divide behavioral-services into several groups so as to deploy them separately on

different systems for load balancing.
The table 1 gathers these previously overviewed approaches. For each, we checked the characteritics from

(Sec. 2.1) of ubiquitous systems programming supported.

Table 1: Characteristics of middleware approaches for ubiquitous computing

o +~
2 &
ot gl 5
kS = 5] 2 N
~ ~
[T g = ~ -3’ 2 &0
5 K] £ 5 p» F & & 5
) s’ o @ Mo o~ hfeed -~ > o
3] T ~ ;’ < & D od o— o I
= = 8 3 ~ ~ t%) ~Q Q o]
&~ [1v1 [5) [e) (2]
-3 [O 5 S I O o [}
) fa] o &) w & = QA B
GAIA X X X X X X
ExORB b'e X X X X X
CORTEX X X X X
Aura X X X X X
Oxygen X X X X X X
SATIN X X X X
DoAml b'e X X
X X X

SCORPIO x

Those approaches are not able to fulfill all our requirements for the kind of system we deal with: dynamic
component-based systems applying different application domains which evolve continuously and which adap-
tation must be symmetric to meet simplicity. But some works modify the content of the components which
should be considered as black-boxes for proper reuse. On the other hand, they often base their approaches
on fully-computational reflection and middleware. Computational reflection is the possibility for a program
to reason about and alter its own behavior. This does not meet requirements because this implies that the

execution platform provides full-reflection capabilities which are not possible on embedded targets. Simpler

abstraction mechanisms could and should be found.

3 Paradigms

Adaptation requires the ability to reconfigure the deployed code, which is considerably simplified when
applications are loosely coupled and modular rather than monolithic blocks of codes. Numerous systems have
been designed in order to partially respond to ubiquitous applications’ problems. We distinguish component-
based, service-oriented, event-driven, and aspect-oriented systems. By component-based we refer to dynamic

and easily manipulable system engineering, by service-oriented we refer to architectures based on services
descriptions and interactions, by event-driven we focus on publish-subscribe based middlewares, which notify

entities by significant changes, and by aspect-oriented we refer to the methodology enabling separation of

concerns.
3.1 Component-based software engineering
Components, as they were defined in [2], are an alternative to object-oriented programming in the design and
handling of basic entities. Components provide functionalities, exported and used through their interfaces.
We focus on black-box components, for which we only know the semantic, but not the implementation, like
services oriented architectures. Components are usually more finely grained than services. However some
component models like EJB or CCM are more seen like services on this point, since, in addition, they can be
deployed and distributed on a network. On the other side, OSGi is often considered as a component-based

system, due to its relative lightness. We mainly focus on lightweight component models, like JavaBeans or
.NET components despite their need for a virtual machine, which can be fitted in embedded systems and
easily used in pervasive systems. Conversely, Heavy components include a part of the middleware which makes
them become services, i.e. capable of automatic injection of proxy and dynamic construction of glue codes.
They can also handle multiple requests at the same time, and robustness is increased, due to several non-
functional embedded properties. The intersection of a lightweight component and a service constitutes the
core functional component. [16] suppressed a level of complexity by introducing the self-adaptive component
model K-Component which enables individual components to adapt to changing environments through a
complex decentralized coordination model which simplified the integration of multiple objectives and allowed
groups of components to collectively adapt their behavior.

Component-based systems bring dynamicity to local application, enabling pieces of softwares and relations
between them to be added, removed or updated at run-time.

3.2 Service-oriented systems

The main features of service-oriented systems are their flexibility in handling dynamicity and their suitability
to the integration of new devices. They are also relevant to and very used by distributed computing. Services
can appear or vanish on a network, notifying the whole system, and reconsidering the services used for the
application which best suits the needs. From a certain point of view, this notification can be considered being
part of an event-driven system, but this is only made by the services repository, and services cannot send
applicative events to other services.

Our aim is not that different from the aim of the non-distributed lightweight service architecture OSGi [22].
But this approach remains Java dependent and therefore the model stays to some extent confronted to
object-oriented architecture inter-dependency. Indeed, we rather draw from the CORBA standard which was
a precursor of Services Oriented Architectures used for distributed computing, enabling different languages
and different computer architectures to share data and act in the same application. Later, web services came
up providing this kind of wider interoperability using Web standards.

A second point is lacking in services-oriented systems when used in pervasive systems: they rely on a
centralized architecture, like the CORBA broker, or a UDDI repository for web services. Mobile systems can
appear on several networks, often wireless and not persistent, and need a more flexible approach.

Furthermore, [37] provided logical primitives to transfer codes so as to reconfigure software systems and
enhance robustness. [27] focused on the configuration and integration of devices in pervasive computing
scenarios which include self-organizing configuration for pervasive computing environments supporting un-
skilled installation. They coupled a domain specific language (DSL) and middleware but with a centralized
approach.

Service-oriented systems allow robustness, coordinating services in a programmatic decentralized collaboration.

3.3 Event-driven systems

Event-driven architectures have been used for self-adaptive or reconfigurable systems for many years. Their
common distinctive feature is the weak-coupling of components meaning individual components do not know
the components realizing their required functionalities at design time. The information is set at runtime
either by the component itself or another one. The first case is illustrated by the reflective component model
OpenCOM v2 where new types of components can be added and function calls can be altered by modifying
a process vtable [10]. The second case is known as the principle of Inversion of Control that has been
experimented in a lightweight container in [4, 13] as an interactive adaptive system. Weak-coupling offers a
high degree of expandability but its relatively low level of abstraction does not allow complex software design.
Event-driven systems are not suitable for very complex design, but adequate for reactivity and dynamicity.

3.4 Aspect-oriented systems

We consider that the three previous paradigms are made to be used for composition, creating the system
behavior and initial structure. Aspect-oriented programming can be seen as an orthogonal approach, used
for adaptation.

Aspect-oriented systems [19] consist of a set of join points, pointcuts, advice, and weaving loops which
operate at runtime or design-time to construct or modify an executable program from cross-cutting concerns.
It cannot exist alone, and is most often associated with object-oriented programming. The trend consists
now in considering adaptations as cross-cutting components woven as classical AOP aspects. [15] designed a
DSL and expressed adaptation concerns as aspectual components in order to monitor self-adaptive systems.
He also proposed to express pointcuts in terms of binding scripts. However, this approach does not provide
a collaborative combination and does not avoid semantic conflicts by the bindings declaration.
Aspect-oriented systems provide an enhanced modularity as they include separation of concerns, but are not
intended to achieve service collaboration.

3.5 Paradigms of existing middlewares

To link these paradigms with real world approaches, we list what paradigms are used by the middlewares we
studied in (Sec. 2.2).

o GATA relies on services with events and components, but in a centralized approach. This is not
convenient for networks that change frequently.

e ExORB uses Micro-Building Blocks which behave close to a component architecture for the modularity
and updatability, it has a component structure, but is called ORB like Object Request Broker. However,
the communication protocols used look more like services ones. So this is not very clear what paradigm
is used by ExORB.

e CORTEX uses objects as main entity of its network, and events for communications between them.

e Aura finds services in the environment, and notifies the middleware using events for context changes.
However, it is built with components.

e Oxygen uses a distributed object oriented database to upgrade softwares, improve performances and
add features easily.

e SATIN defines a component model but does not rely on any other paradigm.
e DoAml uses CORBA services only.

e SCORPIO adapts using structural modifications of a component assembly.

Table 2: paradigms used by middleware approaches

Events Services Components Objects Aspects

GAIA X X X

ExORB X

CORTEX X X
Aura X X

Oxygen X
SATIN X

DoAml X

SCORPIO X

We see that approaches used to create middlewares for ubiquitous computing can vary a lot for the
paradigm used. But what are the advantages of using one paradigm or another, or even several at a time?
The two following subsections will answer this concern.

3.6 Comparison of paradigms characteristics

Table 3 summarizes relative strengths and weaknesses of studied paradigms. We see that we cannot get all
ubiquitous computing requirements if we do not use both component, service, and event paradigms. Aspects
are orthogonal to these, and give full strength to component assembly adaptations.

Table 3: Comparison of self-adaptive approaches

Component Service Event Aspect

Adaptation X X
Heterogeneity X

Extensibility X

Scalability X X X

Security X X X X
Reactivity X

Mobility X X

Discovery X

Updating X X

Components are best suited for adaptation, due to their modularity and dynamicity, as a support for
aspect to weave on. Heterogeneity or communication protocols, devices, and languages can be reached using
web services. Reactivity needs a publish/subscribe mechanism to broadcast information to several services
of the environment at the time it gets available.

3.7 Multi-paradigm systems

Multi-paradigm systems are born to take advantages of several paradigms at the same time. Table 3 (Sec. 3.6)
has prooved that using only one paradigm cannot achieve full support of ubiquitous computing requirements.

For example, services oriented systems and event-driven systems have gave birth to services for
devices [12] like JINT [7]. They give services the ability to send events by themselves to any other service
which want to receive them. They also break the need for a centralized repository, and make fully distributed
architectures, using multicast discovery. To enable interoperability and standardization brought by web
services, web services for devices were created, the two currently existing being UPnP [18] and DPWS [30].
However, creating applications based on web services for devices only may reveal quite non-evolutive, since
discovered services, or more exactly their interface, have to be known at code time.

Another example of combination is SCA which stands for Service Component Architectures [3]. SCA
handles components and services, using components to manipulate service orchestrations and create
higher-level services. However, components used in this model cannot be classified as lightweight compo-
nents, since the framework provides life cycle operations such as lazy instanciation, or a reduced transaction
management, called conversations.

Several combinations of components and aspects have also appeared. For example Aokell [31], which
uses aspects create component containers (called “membranes” in the Fractal component model). This only
adds non-functional properties handling using aspects. The same team has created FAC [25] (Fractal Aspect
Component) which uses a symmetric solution representing aspects by components. With FAC, aspects can
intercept messages between components, since they fit in the controller, but do not handle conflicts and
structural adaptation of the assembly when inserting or removing aspects. Pointcuts can be specified as
a method name, component name, or return type, using regular expressions. OACI [33] (Aspect-Oriented
Component Infrastructure) is another approach using aspects to adapt component oriented middlewares,
using EJB, which makes it quite heavy for pervasive computing, but its main backdraw is that they use
grey-box components and violates the interface access only.

The most promising approach is SAFRAN [15] (Self-Adaptative Fractal Components), though it is
autonomic-computing oriented. It defines a structural-adaptable component platform, using aspects as adapt-
ing tools. Aspects advice represent a list of structural modification to be applied on the base assembly. The

pointcuts can be defined by two kinds of events: changes from the execution context (e.g. memory or at-
tribute of a resource) and changes from the execution of the target application itself (e.g. reception of a
message or creation of a new binding).

Other works on adaptive middlewares are using aspects and services. Services and aspects are getting
on the front of the scene, lots of works are appearing, in pervasive computing or context-sensitive worlds [26,
20]. Service fit well with handling of devices in the environment, or mobile-computing issues needing dynamic
discovery, and in these works, aspects bring an adaptation layer to services, respecting cross-cutting concerns
between the functionnal code and adaptation code.

4 Our middleware model: WComp

We propose a middleware approach called WComp taking into account, at best, all the previously explained
principles for ubiquitous computing. It federates three main paradigms :

o FEvent-based web services paradigm : we distinguish two kinds of services : composite services which
are services whose implementation calls other services. They are opposed to basic services, whose
implementation are self-contained and does not invoke any other services. They are generally Web
Services for Devices like UPnP or DPWS (Sec. 3.7).

Ubiquitous applications are then a graph of event-based web services.

o Lightweight component-based paradigm inside composite web services : a Composite Service is based on
an internal lightweight components assembly to manage composition between other event-based web
services and to design the interface of a new higher-level composite service. We call this paradigm
Service Lightweight Component Architecture (SLCA), which is based on events, and a minimum of
extra-functional properties unlike SCA [3]. A Composite Service is then a WComp container managing
a dynamic assembly of lightweight WComp components and providing an event-based web service
interfaces.

A composite event-based web service is dynamically managed using an internal lightweight components
assembly.

e Adaptation paradigm using the original concept called Aspect of Assembly (AA): this concept allows
to prepare kinds of independent and crosscutting schemes of adaptation dealing with separation of
concerns, logically mergeable in case of conflicts and applicable to every Composite Web Service of the
application, not necessarily known (a priori).

Adaptations as a set of AA, are designed without knowing event-based web services of the applications.
They are applied (weaved for AA) to the set of event-based web services of the applications at runtime
implementing required adaptations.

Thus our middleware allows to adopt both ways to dynamically design ubiquitous computing applications.
The first implements a classical component-based compositional approach, using SLCA, to design higher-level
composite Web Services and then increments the graph of cooperating services for the applications. This
approach is well suited to design the applications in a known, common and usual context (Fig. 1). We call
such a compositional approach composition for higher-level services.

The other way uses a compositional approach for adaptation using AA, particularly well-suited to tune
a set of event-based web services in reaction to a particular variation of the context or even new preferences
of the users. We call such compositional approach composition for adaptation.

4.1 Composition for higher-level services with WComp

WComp is a lightweight component-based approach to design composite web services (Fig. 2). A Composite
Service encapsulates a WComp container managing a dynamic assembly of lightweight WComp compo-
nents. The WComp component model is a slightly modified JavaBeans model adapted to other programming
languages with the concepts of input and output ports, properties, and hierarchy. Still an instance of a
component type, but not necessarily serializable, a component has a unique name and an interface composed

'I,"'l‘iﬁ o™
e T
D.". g Event based Composite
_ Web Services
g =ty |
oE E———
iy eata

T o
| ¥ ‘.!lj.
Event based Web Services
of the Infrastructure

> — L
Infrastructure
of Devices a
Physical and
Social ya
Environment 8 @ k/

Figure 1: Graph of event-based web service

of two sets of events and methods (event’s names are prefixed by ‘*’). Types of components define their
interfaces. We consider C' the set of component instances, F the set of events characterized by their unique
name, and M, the set of methods. We gather the declaration of events and methods in the term ‘port’. We
consider a set of links L which are lists composed of an instance event and a type method. Then an assembly
consists of a subset of C' and L. The container component implements an API to dynamically control this
assembly, and consequently the addition and removal of elements in C' and L. Roughly speaking, we use
events — also known as late-bindings, “push” mechanism, or Inversion of Control — in lightweight containers
which is now shared characteristics of adaptive component models [9].

A Composite Service provides both service interfaces. A first interface concerns the new functionali-
ties provided by the composite web service (call functional interface) and the second one allows to modify
dynamically the internal assembly of WComp components (call structural interface).

The Functional interface export events and methods of the internal assembly using probe components.
The insertion of a new probe component can dynamically modify the functional interface and its description
of the corresponding composite service.

The structural interface allows to dynamically modify from other connected client (possibly other compos-
ite service using a proxy component on this service) the internal assembly of the service by adding, removing,
links and components.

Composition graph of services. Other event-based web services can be handled in WComp using lightweight
proxy components to other event-based web services. Thus WComp model can be considered as hierarchical
between services.

4.2 Composition for adaptation with WComp

On this first model of WComp [13], our middleware for ubiquitous computing, we introduce an adaptation
mechanism using a set of Aspects of Assembly. They can be selected either by the user or triggered by context
changes in a self-adaptive process and composed by a weaver with logical merging of high-level specifications
(Sec. 5). The result of the weaver is projected in terms of pure elementary modifications (PEMs) — add,

Structural Functional

Interface interface of
of the the
composite composite
Service Service

D Proxy Component for Event based Web
Services

Probing Component towards the functional interface
. of the Composite Service

Figure 2: Composite Event-based Web Service

remove components, link, unlink ports. When aspects of assembly are weaved, components can be involved
in different interactions that must be composed. We detail the Aspects of Assembly principle in the next
section.

5 Aspects of assembly

We propose a component-oriented integration which takes into account the adaptation characteristics in
(Sec. 2.1). Our architecture is twofold: it consists of an extended model of AOP for adaptation advices and
of a weaving process with logical merging. We implemented a toolkit (Fig. 3) which includes AAs as the
central concepts. We introduce here concepts used in the rest of the paper:

Base assembly: an assembly of components.

Join point: components and ports of the base assembly.

Pointcut: a description of a set of join points for a particular adaptation advice.

Adaptation advice: adaptation advice describing architectural reconfigurations.

Weaver: mechanism integrating advice according to specified pointcuts selecting join points from a base assembly.
It is also responsible for the merging of conflicting advice.

An AA is structured as an aspect with a pointcut and advice (adaptation advice) which is specified in
a DSL using interaction specification firstly defined in [11]. This DSL has been then enhanced in [13] to
integrate event-driven declarations. With this present approach, self-adaptive pervasive software developers
can reason, plan, and validate AA-based assemblies at all stages of the development phase. Using logical
predefined validation rules, logical configurations’ incompatibilities can be detected at runtime.

Advice. We present an example of advice which is used in a practical situation for raising an alarm when
someone has not been visible for a time, or is out of reach. The advice called ‘Ex’ redefines an input and
an output port and is applied to a set of components symbolically represented by the observed and alarm
variables:

1 ADVICE Ex (observed, alarm):

2 observed. “0Out ->

3 (IF (alarm.Check) CALL)
4 alarm.Check ->

10

t of assembly Designer

i List of AA Aspect of assembly
Act. Sel.|AA cur. |14} [vocaL_pusH
W ¥ VOCAL_FILL 0) - V' Pointcut v
outon:=/buttor/
| ¥ ¥ VOCAL PUSH Cif micro:=/microphone*/ Pointcut
[J [0 demo_contrat [m] BrEaiia
[0 [0 demo_init [m] -
O O dupp O schema VOCAL_PUSH(bouton,microvocal_push):
O O dupp2 O)
vocal_push : "WComp.Services SpeechToText' ;
0O O faros_exl [| |
0 O faros_exl_dupp m] micro.” SendAudioFile -> (Advice
O O faros_ex1_duppintt O \).rocalJ:ush.TranslateButtDnCumrnand Adaptaﬂon
[J [faros_ex1_init [m]
vocal_push.~ SendButtonCommand -=> (
Advice U 7] bouten.performclick
5 ini]
Selection - .
_init_emror [] ~ Advice ~
O 3 s1 my = I Update ” Save |
Figure 3: Aspect of Assembly Definition
5 (alarm.Start ; CALL)

Description. Firstly, it redefines the “Out output of the observed component, which specifies that actions
possibly defined in the base assembly are executed only if the alarm component authorizes it. Secondly, it
redefines the Check input of alarm, which specifies that before the execution of the input possibly required
by other components, alarm must be started, i.e. the Start input must be executed.

We defend a minimalistic approach in order to be able to cope with scalability. And for this reason, those
specifications are translated into a set of PEM. Any modification can be regarded as an assembly-to-assembly
transformation. Thus, the AA designer depicted in the bottom window in (Fig. 3) communicates its PEM
to a container (Sec. 4.1).

Pointcut. We define pointcut descriptions as sets of filters on base assembly meta data — component ID,
their types, etc. Those filters construct a list of parameters satisfying the list of variables of an advice for the
latter to be integrated in the base assembly. If only one list is constructed, the advice is integrated only once
in the base assembly and the symbolic variables are syntactically replaced in the advice to match the base
assembly join points. If several lists are constructed, the advice is duplicated and each set of variables, with
one occurrence of each join point, are respectively replaced. For our experiments, we choose for convenience
to express filters in the AWK language [5] and define a simple grammar to make AWK responses correspond
to advice variables: ‘<variable>:=<AWK filters>;...". Example:

1 observed := /userx/ ;

2 alarm :=

3 Jerrx/ { al[substr($1,3)]1=$1 }

4 END { for(i=1;i<=NR;i++){print alil} } ;

Description. The observed variable is matched against component ID starting with ‘user’ and alarm,
against those starting with ‘err’. The second filter (lines 3-4) is an AWK program which, more than matching
the beginning of component IDs, actually sorts them by alphanumeric order. The line 3 stores the IDs in a
table, depending on their suffix. At the end of the matching test, the program displays stored IDs sorted.

The order of the components is not specified and can be random when a specific program in AWK to sort
them is not written. In this example, the first pointcut is unordered and the second is ordered. We consider
a base assembly of five components: errl, err2, err3, userl, and user2. The advice is duplicated into
two applicable advices (Ex1, Ex2). The global result is a two dimensional table whose duplicated advices’
parameters the columns represent:

11

user2 ‘ userl ‘ ‘

« this line is not sorted

errl ‘ err2 ‘ err3d ‘

«— this line is sorted

Consequently, in the two duplicated advices Ex1 and Ex2, the parameters of Ex1 and Ex2 are not
associated with the parameter with respectively the same ID: user2 is rather associated with errl and userl

is associated with err2.

1 ADVICE Ex1(user2,errl):
2 user2. 0ut ->

3 (IF(err1.Check) CALL)
4 errl.Check ->

5 (err1.Start ; CALL)

1 ADVICE Ex2(userl,err2):
2 userl. QOut ->

3 (IF(err2.Check) CALL)
4 err2.Check —>

5 (err2.Start ; CALL)

The decision to integrate adaptation advice according to specified pointcut follows the following rules: (1)
only the first complete columns of the table become parameters of the duplicated advices (in this example,
only the two first columns become parameters). (2) the order of the ID in the first line {user2, userl} can
change. Therefore, to apply an advice deterministically, lines must be sorted.

Weaver with logical merging. The logical integration rules are represented by a matrix representing
the two-by-two merging of operators. We give few examples of logical rules in (Fig. 4) and explain the

N d§§§$
2
seq &§§b|d§°| if

msg

call n°P|

seq

]
if (C) A else B I
+ delegate D

delegate

if (C) A+(delegate D)
else B+(delegate D) .

if (C) A else B
+ if (C) D else E
if (C) A+D else B+E

-1

composition

2) if (C) A else B
+if(C') Delse E

if (C&C') A+D else
f 7 if (C&IC') A+E else
if
if (IC&C') B+D else
if (1C&!C') B+E
ms
9 msg +call
msgq L
call L
nop

Figure 4: Operator merging matrix

weaving of two advices called ‘Ex’ and ‘AA0Q’ (line 1 and 6 bellow). Hypothesis: two pointcuts respectively
specifying the ‘observed’ variable and the ‘worker’ variable are in conflict (produce the same join points):

1 ADVICE Ex (observed,alarm):

2 observed. 0Out ->

3 (IF (alarm.Check) CALL)

4 alarm.Check -> (alarm.Start ; CALL)
5 ADVICE AAO (producer,worker,consumer) :
6 producer. 0Out -> (worker.In)

7 worker. Out -> (consumer.In)

Merging example. The specification rules (SRs) at line 4 and 6 are not conflicting. Thus, they are copied
in the resulting advice (line 5 and 6 below). However, the SRs at line 2 and 7 are conflicting because they
redefine the same output “Out of the confounded observed/worker component. Therefore, their respective
specification programs are logically merged and the resulting ‘AA0+Ex’ advice is calculated using the merging
matrix (Fig. 4). The ‘+’ operator corresponds to the unordered couple of operations to execute. The merging

12

process replaces CALL at line 3 of ‘Ex’ by CALL + consumer.In in ‘AA0+Ex’. The resulting AA is then
translated into a set of PEMs. For instance, IF operator is interpreted as the addition of a generic component
of type IF.

1 ADVICE Ex+AAO (observed,alarm,

2 producer, consumer) :

3 observed. “Qut ->

4 (IF (alarm.Check) { CALL + consumer.In })
5 alarm.Check -> (alarm.Start ; CALL)

6 producer. 0ut -> (observed.In)

We saw the A A-specific design process as well as one cycle of the adaptive pervasive application. In the next
section, we present the process cycles used to perform self-adaptation.

6 Validation

We validate our approach by commenting the results of few experiments on sets of randomly-generated
assemblies. The purpose is to show the advantages of AAs while evaluating the additional costs concerning
the adaptation time of the composite Web Services of the ubiquituous applications.

In this section, we present the first part of a step by step model of the weaving process using aspects
of assembly. We draw some experimental results in order to verify and identify parameters of a simple
performance model we propose to predict pointcut matching performance under certain conditions.

6.1 Step by step model of the weaving process

The assembly size is the number of components and links. The weaving process is separated in four steps
(Fig. 5): selection of AA (1), pointcut matching (2), composition and merging of AAs (3), translation and
modifications from an AA to elementary modifications (4) for the container of the corresponding composite
service.

® @

T~ T

AA Selection Pointcut
matching

Composition
and Merging
> ranslation
4H_,F)r—)'ﬁ"ﬁ)’ and

Pointcut . —|

Advice

Figure 5: Adaptation Cycle with AA

First of all, the composition process (3) — logical merging of AAs — depends on the advice of the AAs.
Indeed, even if we can assign a measure to an AA in terms of the sum of the number of links and components

13

which are necessary for its description, we remain unable to predict the rules that would be processed in
order to compose and possibly merge the AAs together. As example, terminal rules such as the “msg+call”
rule cost less than recursive rules such as the “if(...)+if(...)” rule in (Fig. 4) and rule selection depends
on AA advice specification. It is difficult to predict the content of an AA which depends on many factors
(application domain, scenario complexity, etc.). Therefore, we cannot provide a model of the composition
time process yet. Finally, modification and transformation model (4) — AA to PEMs and interpretation by
the container — exploits composition results. This is the reason why we cannot provide yet a model for it
neither.

However, pointcut matching (2) together with selection (1) (which gives joinpoints and specifies duplica-
tions of AAs) are processes that perform computation on sets of components and AAs. Thus, their duration
varies according to our initially defined parameters (program size and AA size). We may thus design a simple
model.

Let D, be the duration of the pointcut matching process, D,, the duration of the modification. Let
ai,...,a, be the model parameters (specific to a precise hardware) and ¢ the number of components in the
assembly.

6.1.1 Pointcut matching

Let A;nit be the number of initial AAs (those in the repository). We note d; the number of duplications
of the AA number i. We have A;,;; aspects of assembly and each of them is associated with a pointcut
specification. Hence, each pointcut gives the number d; of duplications. And each duplication is processed
in order to calculate a duplicated AA.

The calculation consists in a AWK processing. We propose here a very simple model of the AWK processor
saying that it behaves like ¢? where c stands for the number of components. We have the following model
for pointcut matching:

D, = a;. ZZZ’{” (d; +1) % ¢ + ay

The quantity d; is not easy to determine because it might depend on usage or caracteristics of the appli-
cation. Typically, this quantity depends on how components appear in the system. We have experimented a
probabilistic model provided that the application is behaving in the same way.

This model however might not be sufficient for relatively small values for ¢ because it is rather simple.
But we obtain a quite good approximation (see the following sections).

6.2 Experimental results

We have measured the pointcut matching duration and confronted it with our simple model. In this section,
we describe firstly the experimental conditions we have performed the experiment. Then, from the results,
we propose an identification of the parameters of the model.

6.2.1 Pointcut matching example

The experiment has been performed on an Intel T2300 1.66GHz processor. During this experiment, compo-
nents appeared randomly according to a binomial law. We can already infer that the number of duplications
noted d; in the previous section is dependent on this law.

On this system, we programmed an application as follows. Every tenth second (for about 20 seconds), a
new component among two categories I, and s, is randomly added to the base assembly and their indices x
and y are incremented each time from 0 to 200. Every time a new component is added, the pointcut matching
process is executed and a set of AAs is selected and applied. To keep the example simple, we defined only
one AA called aag but able to duplicate when specified.

We explored two cases: the first case consists in disallowing aag to duplicate; the second case allows it.
We confront our model (in green in the following figures) to the real-world measures (in red).

14

1) Without duplication The first case we analyse is without duplication and we obtain the graphs in
(Fig. 6). This means that for every aspect 4, the number of duplication d; is zero and we only use one AA.
So, the formula is then simplified as follows:

D, = a1.¢2 + as
We draw in (Fig. 6) the experimental result with the predicted model. Although simple, we can see that

the model fits quite the experimental data. This first experiment permits to determine the model parameters.
We found a; = 280.10° and as = 2.1073.

0.01 T

0.008

0.006

0.004

4] 20 40 60 80 100 120 140

Figure 6: Experimental results without duplications

2) With duplication The second case consists in duplicating systematically the AA. But in such a case,
we need to know how d; behaves. As a matter of fact, we know that a component appears randomly, chosen
among [, and s,. Thefore, the AA has a probability of being duplicated of % This is why we take d; = %
which is the probability of getting the right parameter in order the AA to be duplicated. After simplifications,
we obtain the following formula for the performance model and reuse the parameters we determined in the
previous experiment:

D;, = al.%.CQ + as

(Fig. 7) shows that the parameters are correct and can be used to caracterize the hardware system. We
can see irregularities on experiment. This is due to memory collection.

6.2.2 Parameters identification example

We have identified the parameters of our model for T2300 based computer. By bringing the results of the
experiment and the model face to face such as in (Fig. 6), we obtain an approximation of the model parameters
(a1 and az). We obtain approximately for the two cases the values for a; and ag that remain the same for
the two experiences and thus characteristics of the hardware system:

a1 = 280.1079 and ay = 2.1073

15

0.01

0.008 - b -

0.004 |- “ f'_}]‘ -
| |l#7
| FJ,?‘ 7
0 GGQ—M ~
o | 1 ! | I 1
a 20 40 B0 BO 100 120 140

Figure 7: Experimental results with duplications

7 Demonstration of Self-adaptation cycles

Self-adaptation consists in reacting to modifications from the user or the environment. Self-configuration
is processed by the decoupled AA designer. We describe the user-driven approach and the process which
permits to adapt the application to its environment (Fig. 8).

The user-driven adaptation consists in (de-)selecting AA in order to integrate or erase some behaviors
and functionalities in the system. The user can also intervene on the base assembly and operate directly on
the assembly. Concerning the area of end-user programming, we distinguish expert and end users. Expert
users can design new AAs for new situations whereas end-users do not have to create AA, but only select
predefined AA. In that case, the interaction with the user is simplified.

The context-driven adaptation consists in scanning the underlying infrastructure periodically in order to
verify if devices are still present in the environment. New devices can asynchronously inform the system
of their presence by broadcasting a notification. Therefore, when a device is removed from the system’s
environment, the software component representing the device is unlinked and removed from the base assembly.
Conversely, when a new device appears, a new software component representing this new device is added to
the assembly. Consequently, the self-adaptation process consists in detecting those structural changes in the
base assembly and each cycle of the process checks if either new AA are applicable, or applied AA are not
valid anymore. This depends on if required components to an AA are present or not. If a notable change
occurred, it recalculates PEMs to be applied on the base assembly.

However, two cases should be considered when an adaptation calculation occurs. The base assembly can
be empty (at least no links between components ports). In such a case, the application — more precisely the
interactions between components — is constructed by iterations of the application of AAs. Conversely, the
base assembly can be composed of interconnected components. In that case, before adapting the assembly by
iterations of application of AA, the base assembly (under the form of ADL) is translated into an AA which
is always selected to be composed so that the composition of PEMs takes into consideration this initial state.
For example, the advice ‘AAQ’ explained in Sec. 5 is the AA result of the transformation of a base assembly.

Finally, the adaptation process is projected on a set of services and composite services as defined in
Sec. 4.1 and is considered as a distributed system.

To illustrate the principles of described mechanisms, lets take an example of an ubiquitous application.
The example we will describe is based on a multi-devices application to send text messages through a network.
There are three kinds of communication modes: Wifi or GSM connection and when we lack any infrastructure,
the application can store messages and send them to a cache system.

16

Context and
User Driven
Adaptations

<7

Figure 8: Context and User Driven Self-adaptation using Aspects of Assembly

The described application is developped with basic components or services and the adaptation is made us-
ing aspects of assembly to re-organise the connections between entities, instanciate new software components,
or interact with new services. We have grouped aspects of assemblies into three categories:

e Basic functionalities: these aspects of assembly are used to build the application upon the basic avail-
able services and components. Each aspect of assembly specifies the method to weave to add a new
functionality (Wifi or GSM communication or caching system) to the existing application.

e FEnergy Policy: we have defined three aspects of assembly based on power comsuption policy:
— Minimal power consumption: the Wifi and GSM devices will be disconnected from the application
and all the communication will be routed to the cache system to store messages.
— Standard power consumption: messages are sent by SMS over the GSM network.
— No limitation to energy consumption: Wifi is used and all messages are routed to this device.

e Adding new functionality: the functionality we want to add to our communication application is to be
able to use it hand-free. To achieve this, we will define two kinds of aspects:

— Voice control: this module is dedicated to bind a voice control system to activate part of the user
interface,

— Voice input: this module is used to achieve speech to text recognition to allow input text messages
to the system.

For example, here is the code os Aspects of Assembly defined for the voice control and voice input aspects.

All these aspects of assemblies are applied to the initial defined application to dynamically build the
connections between components or services to give the right behavior. ”Basic functionalities” are selected
by the context exclusively (a user can’t decide to use a Wifi communication in the infrastructure if not present
in the environment), but all other sets of AA can be activated by user or by context of the application.

17

POINTCUT
button:=/button*/
micro:=/microphonex*/

ADVICE Vocal_Control(button, micro, vocal_push):
vocal_push : ’WComp.Services.SpeechCommand’;

micro. SendAudioFile —> (
vocal_push.TranslateButtonCommand

vocal_push. “SendButtonCommand -> (
button.PerformClick
)

Figure 9: Voice Control Aspect of Assembly

POINTCUT
box:=/textBox*/
micro:=/microphone*/

ADVICE Vocal_Input(box, micro, vocal_input):
vocal_input : ’WComp.Services.SpeechToText’;

micro. SendAudioFile -> (
vocal_fill.TranslateText

vocal_input. SendText -> (
box.set_Text

)

Figure 10: Voice Input Aspect of Assembly

18

In the first example presented by (Fig. 11), the application send all messages via the wifi connection
(Fig. 11(a)). When the user want to minimize is power consuption to maximize the autonomy (user driven
adaptation), or when the battery is low (context drivent adaptation), the aspect of assembly definied in the
“Energy Policy” section modify the application to send all data to the cache component (Fig. 11(b)).

SharpDevelop =]
Fichier Edtion Affichage Recherche Wicomp.NET ébogger Cutis Fendtre Aide 2 # SharpDevelop EEX
L I x |19 o | = " >a___ o Feher Edton Afficheos Recherche WCompNET Exécution Débogoer Outls Fendtre Ade
Containerz.cs* | 4bx D2WM XD M"’ d-f- dE b A A > @ A
et odified by =

T O =

Button']
ot SendCache
sendSms_batteryl_1 button_send 1

S0 —

T send:

|
¥

SendCache
sendCache_batten0 |

=

eeeeeee

Bution
button_send 1

>Torichn@ubiquarium.org \ >=To:john@ubiquarium.org
Message meeting with Alice at 2 PM T @ﬂ ;), T e o ot 2 PM 3), e
.- £ sendSms_batteyl 1
primitiveV alueE mitter1 E e
...... Sendhtal £ -
RichTextBox sendMail_batten2 1 FichT extBox
textBox_message.1 textBox message. 1
Source | weama T |Desen Sorcs | Weam T |05
Prét li1 col 1 ear 1 Prét L1 col 1 cal
(a) Before Adaptation (b) After Adaptation

Figure 11: Adaptation based on Wifi activation

The second example presented by (Fig. 12) shows the application adaptation provided by aspects of as-
sembly dedicated to “New Voice functionality”. The adaptation consist in adding new software components
and modifying the connections between components and services to add the new functionnality. All modifi-
cations results in structural modifications on the assembly. Defined aspects of assembly for this example can
be found in (Sec. ?7).

on Affichage Recherche WComp.NET

RELCT IR x| @ 8l | =

4 Sharpbevelop
b x P Gt Afiwge Racheche WCoIET Exbafion Dibogger Ouis Fanire A
EXCLY) x 9 = : > @ D

Container.cs*

Miciophone
..... phonel

FichTeuton
textBox_message._|

Source. “WComp. NET |Desian -

Pt i1 el cal Fiet 1 ool cat

(a) Before Adaptation (b) After Adaptation

Figure 12: Adaptation to pilot application with voice

The described example as been implemented using WComp' and Aspects of Assembly paradigms. This
application is also included in a framework we have developped for the study of mobile computers appliances
in simulated Environments, called Computer Ubiquarium?. The Ubiquarium? comprises various devices and
services, which can be discovered and composed at runtime. Those devices can either be virtual devices (3D
scene objects in which the user is immersed), or physical devices worn by the user or present in his immediate
environment. All devices of the Ubiquarium, physical or virtual, are based on Web Services interfaces which
provide a uniform type of interface.

Thttp:/ /rainbow.i3s.unice.fr/wcomp/

2From Latin Ubique, everywhere, with the suffix rium meaning location and structure. Hence, Ubiquarium means: ”a location
or a structure in which computer is everywhere and in everything”

3http://rainbow.polytech.unice.fr/ubiquarium/

19

8 Conclusion

We introduced the WComp middleware approach which federates three main paradigms: an event based
web services approach, a lightweight component-based approach to design composite web services and an
adaptation approach using the original concept called aspect of assembly(AA). Then we introduce both ways
to dynamically design ubiquitous computing applications. The first implements a classical component-based
compositional approach, using SLCA, to design higher-level composite Web Services and then increments the
graph of cooperating services for the applications. This approach is well suited to design the applications in
a known, common and usual context. The second way uses a compositional approach for adaptation using
AA, particularly well-suited to tune a set of event-based web services in reaction to a particular variation
of the context or even new preferences of the users. We call such compositional approach composition for
adaptation. In such process, aspects of assembly are selected either by the user or triggered on context changes
and composed by a weaver with logical merging of high-level specifications. The result is then projected in
terms of pure elementary modifications of component assemblies. We finally commented results indicating
the expressiveness and the performance of such an approach, showing empirically that principles of aspects
and program integration can be used to facilitate the design of adaptive application. We further plan to
decouple the DSL from the AA concept in order to specify advices by means of assemblies of components
making up ‘good practice’ advices and generalize AA-merging algorithm allowing the expert user to define
its own merging strategies. Our perspectives get organized around four ways. Firstly we plan to separate the
DSL from the AA concept in order to specify advices by means of assemblies of components making up ‘good
practice’ advices. In second time we want to explore new and generalized AA-merging algorithm allowing
the expert user to define its own merging strategies. In the same time, we will ripen the cost model of the
composition step. Finally we will press on our works on the AA to introduce a trigger mechanism to the AA
selection mechanism.

References

[1] Mit oxygen project. http://oxygen.lcs.mit.edu/.
[2] WCOP’96: Summary of the WCOP’96 workshop in ECOOP’96, 1996.
[3] Service Component Architecture specification. http://www.osoa.org/, 2006.

[4] AuMED (M.), GHANEA-HERCOCK (R.), AND HAILES (S.). MACE: adaptive component management
middleware for ubiquitous systems. In Proc. of the 4th Intern. Workshop on Middleware for Perv. and
Ad-Hoc Comp., page 3, New York, NY, 2006. ACM Press.

[5]) AHO (A. V.), KERNIGHAN (B. W.), AND WEINBERCGER (P. J.). The AWK Programming Lang.
Addison-Wesley, 1988.

[6] ANasTasopouLos (M.), Krus (H.), KocH (J.), NIEBUHR (D.), AND WERKMAN (E.). DoAmlI -
a middleware platform facilitating (re-)configuration in ubbiquitous systems. In System Support for
Ubiquitous Computing Workshop. At the 8th Annual Conference on Ubiquitous Computing (Ubicomp
2006), sep 2006.

[7] Arnold (K.), editor. The JINI Specifications, Second Edition. Addison-Wesley Professional, 2000.

[8] BASTIDE (G.), SERIAI (A.), AND OussaLAH (M.). Adapting software components by structure frag-
mentation. In Proceedings of ACM Symposium on Applied Computing, 2006.

[9] BENcomO (N.), BLAIR (G.), AND GRACE (P.). Models, reflective mechanisms and family-based

systems to support dynamic configuration. In Proc. of the 1st workshop on MOdel Driven Development
for Middleware, pages 1-6, New York, NY, USA, 2006. ACM Press.

20

[10]

[11]

[12]

[13]

Bralr (G.), CouLson (G.), UEvyama (J.), LEe (K.), AND JOOLIA (A.). OpenCOM v2: A component
model for building systems software. In TASTED Software Engineering and Applications, 2004.

BLAY-FORNARINO (M.), CHARFI (A.), EMSELLEM (D.), PINNA-DERY (A.-M.), AND RIVEILL (M.).
Software interactions. Jo. Of Obj. Tech., 3(10):161-180, 2004.

BussiERE (N.), CHEUNG-Foo-Wo (D.), HOURDIN (V.), LAVIROTTE (S.), RIVEILL (M.), AND TIGLI
(J.-Y.). Optimized contextual discovery of web services for devices. In IEEE Int. Workshop on Context
Modeling and Management for Smart Environments, Oct 2007.

CHEUNG-F0O-Wo (D.), TicL (J.-Y.), LAVIROTTE (S.), AND RIVEILL (M.). Wcomp: a multi-design
approach for prototyping applications using heterogeneous resources. In 17th IEEE Intern. Workshop
on Rapid Syst. Prototyping, pages 119-125, Crete, 2006.

CHEUNG-F00-Wo (D.), TicLl (J.-Y.), LAVIROTTE (S.), AND RIVEILL (M.). Self-adaptation of event-

driven component-oriented Middleware using Aspects of Assembly. In 5th International Workshop on
Middleware for Pervasive and Ad-Hoc Computing (MPAC), California, USA, Nov 2007.

Davip (P.-C.) aND LEDOUX (T.). An aspect-oriented approach for developing self-adaptive Fractal
components. In Softw. Comp., pages 82-97, 2006.

DOWLING (J.) AND CAHILL (V.). Self-managed decentralised systems using K-Components and collab-
orative reinforcement learning. In Proc. of the 1st ACM SIGSOFT workshop on Self-managed systems,
pages 39-43, New York, NY, USA, 2004. ACM Press.

GARLAN (D.), SIEWIOREK (D.), SMAILAGIC (A.), AND STEENKISTE (P.). Aura: Toward distraction-
free pervasive computing. IEEE Pervasive Computing, 2002.

JERONIMO (M.) AND WEAST (J.). UPnP Design by Ezample. Intel Press, may 2003.

KiczaLEs (G.), LAMPING (J.), MENHDHEKAR (A.), MAEDA (C.), Lopes (C.), LOINGTIER (J.-M.),
AND IRWIN (J.). Aspect-oriented programming. In Proc. Furopean Conference on Object-Oriented
Programming, volume 1241, pages 220-242. Springer-Verlag, Berlin, Heidelberg and New York, 1997.

LAGAISSE (B.) AND JOOSEN (W.). True and transparent distributed composition of aspect-components.
In Springer , editor, Middleware 2006, volume 4290 of LNCS, pages 41-61, november 2006.

LyyTINEN (K.) AND Y0O (Y.). Introduction. Commun. ACM, 45(12):62-65, 2002.

MARPLES (D.) AND KRIENS (P.). The open service gateway initiative: An introductory overview. In
IEEE Commun. Mag., pages 110-114, december 2001.

Mascoro (C.), HaiLes (S.), LymBErOPOULOS (L.), Picco (G. P.), Costa (P.), Brar (G.),
OKANDA (P.), StvAHARAN (T.), FriTsSCHE (W.), KARL (M.), RNaI (M. A.), Fopor (K.), AND
BouLis (A.). Survey of middleware for networked embedded systems. Technical Report D5.1, 2005.

NIEMELA (E.) AND LATVAKOSKI (J.). Survey of requirements and solutions for ubiquitous software. In
MUM °04: Proceedings of the 3rd international conference on Mobile and ubiquitous multimedia, pages
71-78, New York, NY, USA, 2004. ACM.

PEsSsEMIER (N.), SEINTURIER (L.), DucHIEN (L.), AND COUPAYE (T.). A model for developing
component-based and aspect-oriented systems. In Springer , editor, 5th International Symposium on
Software Composition, volume 4089 of LNCS, pages 259-274, march 2006.

RHO (T.) AND KNIESEL (G.). Uniform genericity for aspect languages. Technical Report IAI-TR~2004-
4, Computer Science Department III, University of Bonn, december 2004.

ROBINSON (J.), WAKEMAN (I.), AND CHALMERS (D.). Composing software services in the pervasive
computing environment: Languages or APIs? Journal of Pervasive and Mobile Computing, Apr. 2007.

21

28]

[32]

[33]

RoMaN (M.), Hess (C. K.), CERQUEIRA (R.), RANGANATHAN (A.), CaMPBELL (R. H.), AND
NAHRSTEDT (K.). Gaia: A middleware infrastructure to enable active spaces. In IEEE Pervasive
Computing, pages 74-83, december 2002.

Roman (M.) and Islam (N.), editors. Dynamically Programmable and Reconfigurable Middleware Ser-
vices, volume 3231 of LNCS. Springer, 2004.

SCHLIMMER (J.) AND THELIN (J.). Devices Profile for Web Services.
schemas.xmlsoap.org/ws/2006/02/devprof, Feb. 2006.

SEINTURIER (L.), PESSEMIER (N.), DUCHIEN (L.), AND COUPAYE (T.). A component model engi-
neered with components and aspects. In Gorton (I.), Heineman (G. T.), Crnkovic (1.), Schmidt (H. W.),
Stafford (J. A.), Szyperski (C. A.), and Wallnau (K. C.), editors, CBSE, volume 4063 of LNCS, pages
139-153. Springer, 2006.

SIVAHARAN (T.), BLAIR (G.), FRIDAY (A.), WU (M.), DuraN-LimoN (H.), OpaNka (P.), AND
SORENSEN (C.). Cooperating sentient vehicles for next generation automobiles. In ACM MobiSys 200/
workshop on Applications of Mobile Embedded Systems (WAMES 2004), June 2004.

SOLDNER (G.) AND KapPITZA (R.). AOCI: An aspect-oriented component infrastructure. In WCOP
2007, Twelfth International Workshop on Component-Oriented Programming, at ECOOP 2007, july
2007.

Sousa (J. P.) AND GARLAN (D.). Aura: an architectural framework for user mobility in ubiquitous
computing environments. 3rd Working IEEE/IFIP Conference on Software Architecture, 2002.

VERISSIMO (P.), CAHILL (V.), CASIMIRO (A.), CHEVERST (K.), FRIDAY (A.), AND KAISER (J.).
Cortex: Towards supporting autonomous and cooperating sentient entities. In Proceedings of European
Wireless 2002, 2002.

WEISER (M.). The computer for the twenty-first century. Scientific American, 265(3):94-104, Sept.
1991.

ZACHARIADIS (S.), Mascoro (C.), AND EMMERICH (W.). The SATIN component system - a meta
model for engineering adaptable mobile systems. IEEE Trans. on Softw. Eng., 32(11):910-927, Nov.
2006.

22

