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Abstract—The complexity of the Cyber-Physical Systems (CPS)
and their interactions with the physical environment makes them
difficult to model completely. Once deployed, these systems are
therefore subject to unexpected events that may degrade their
behavior. Consequently, it becomes necessary to evaluate, at
runtime, the degree of effectiveness of these systems. To address
this concern, a new approach is proposed, drawing its foundations
from the possibility theory and accounting for temporal con-
straints. The degree of effectiveness is then given as the degree
of possibility. A step further, the Choquet integral operator is
used for aggregating multiple evaluations, providing us with a
measure of the users’ satisfaction w.r.t. their preferences. Finally
the proposed approach is validated through a use-case in the
smart-home domain.

Index Terms—Cyber-physical Systems, dependability, trust-
worthiness, effectiveness, Markov models, Possibility theory

I. INTRODUCTION

Cyber-Physical Systems (CPS), in the broad sense, are com-
puting systems whose purposes are achieved from interactions
with the physical world by means of transducers (sensors
and actuators). These systems pose new challenges in terms
of dependability. Indeed, their behavior can be affected by
unanticipated physical processes over which they have no
control and which may potentially hamper the achievement
of their purposes.

Consequently, due to these uncertainties, designers of such
systems can no longer lean on comprehensive and reliable
models for anticipating and removing faults that may arise
at runtime. Thus, uncertainty is now considered a first-class
concern in the CPS community [1] and has given raise to
several projects attempting to address it. For instance, RE-
LYonIT[2], U-Test [3] and Dependable Internet of Things in
Adverse Environments [4]. Most of the approaches address
the problem by attempting to model uncertainty. This makes
sense within controlled environments where uncertainties can
be toroughly identified and modeled.

In this paper however, it is assumed that, in the context of
CPS, uncertainties are unlikely to be completely identified [5].
We do start from the premise that the effects to be produced
by these systems over time are, at the very least, known at
design time. Therefore, it is a matter of (1) modeling the
expected effects and their evolution (denoted as ’behavior’
in the sequel), (2) observing the systems in vivo and (3)
evaluating them for effectiveness (Fig.1).
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Fig. 1: Approach overview. The model Θ reflects the evolution
of the effects to be produced by the CPS, characterized through
observable physical properties and computing system internal signals.
The effectiveness is computed from the model and the observations.

The solution sought to be provided can thus be stated
in these terms: Given the model Θ, compute the possibility
that an observation sequence ~y1:K has been produced by the
CPS. The possibility provides us with a direct insight on the
effectiveness of the CPS as a distance between the desired and
the observed behavior.

The contribution of this paper is twofold:

1) A new modeling framework is introduced for describing
the evolution of the effects to be produced by the CPS.
This model is denoted as Possibilistic Input/Output Hid-
den semi-Markov Model (P-IOHSMM). An algorithm is
proposed for computing the degree of possibility, taking
into account temporal constraints.

2) The case where multiple behaviors (controlled either by
one or multiple CPS) are simultaneously assessed within
a given environment is investigated. The objective is to
obtain a global value for the degree of possibility. To this
end, the Choquet integral aggregation operator is used.



II. BACKGROUND

A. Fuzzy sets and possibility theory

Fuzzy sets [6] are sets whose elements have degrees of
membership. More formally, let U be a universe of discourse.
A fuzzy value on U is characterized by a fuzzy set F ∈ U
[7]. A membership function µF : U → [0, 1] is associated
with the fuzzy set F and µF (v) , v ∈ U , denotes the degree
of membership of v in F . When the membership function
µF (v) is explained to be a measure of the possibility that a
variable V has the value v, where V takes values in U , a fuzzy
value is described by a possibility distribution πV (.). Hence,
πV (v) denotes the possibility that v is true. Furthermore, given
two variables X and Y with respective possibility distributions
πX(.) and πY (.), the joint possibility distribution πX,Y (.) is
given by [8]:

πX,Y (u, v) = min(πX(u), πY (v)) (II-A.1)

Let us consider the context of estimating the effectiveness
of a CPS by observing its behavior. In this context, a variable
V corresponds to the range of values a particular sensor can
take. Thus, πV (.) defines a viability zone of the CPS [9] and
πV (v) denotes the degree of possibility that the behavior of
the CPS, characterized by v, lies within the viability zone.

For instance, let us consider a state x. One can define the
possibility distribution πx(.) where πx(v) denotes the degree
of possibility that v corresponds to the expected emission level
while being in this state (Fig.2). In this paper, normalized
possibility distributions are considered such that πV (.) takes
values in the range [0, 1] and ∃v, πV (v) = 1.0.
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Fig. 2: Let us consider a state x. One can define the possibility
distribution πx(.). Thus, πx(v) denotes the degree of possibility that
v corresponds to the expected level while being in this state.

B. Possibilistic Input/Output Hidden Markov Model

Possibility theory-based Hidden Markov Models have been
applied in numerous areas (e.g. speech recognition [10] and
intrusion detection [11], just to name a few) and can be found
in the literature under the terms Possibilistic HMMs or Fuzzy
HMMs. Their utilization is justified for real life situations
unlikely to be described precisely through probability density
functions (pdfs) [12]. In this context, possibility distributions
allow some flexibility leading, for instance, the false alarm

rate of classical probabilistic HMM-based Intrusion Detection
Systems (IDS) to be significantly lowered [11].

HMMs rely on computationally efficient algorithms, offer-
ing solutions to address the following canonical problems:
• The evaluation problem consists in computing the degree

of possibility of an observation sequence to have been
produced by the model,

• The state estimation problem (filtering) consists in com-
puting the degree of possibility of ending in a particular
state given an observation sequence,

• The state sequence decoding problem consists in comput-
ing the most possible underlying hidden state sequence
that has been ran through to produce an observation
sequence,

• The parameter learning problem consists in computing
the parameters of the model that maximize the degree of
possibility of an observation sequence.

The solutions HMMs provide to address these problems
along with their ability to represent dynamical systems and
capture their uncertainties [13][14], make them particularly
well adapted for assessing CPS effectiveness [15]. Our
approach lies on the Possibilistic Input/Output HMM (P-
IOHMM) which draws its foundations from [16]. This model,
whose possibilistic network is depicted in Fig.3, extends stan-
dard possibilistic HMMs by allowing state transition and/or
emission possibilities to be conditionally dependent on an
input sequence.

Formally, a P-IOHMM is defined by the tuple
< Q,~π,A, ~B > where:
• Q = {x1, x2, . . . , xN} is the finite set of hidden states;
x(k) denotes a hidden state at time k,

• ~π = (π1, π2, . . . , πN )T is the initial state distribution
vector. πi denotes the degree of possibility of the state i
to be the first state of a state sequence,

• A is the N ×N state-transition matrix, where each cell
Aij of the matrix is an input dij-dimensional distribution
of possibility (1 ≤ i, j ≤ N ). Aij(~u) = p(x(k+1) =
j|x(k) = i, ~u(k) = ~u) denotes the degree of possibility
of transitioning to state x(k+1) = j at time k + 1, given
the current state x(k) = i and the input vector ~u(k) = ~u
at time k. The sample space of ~u(k) is continuous (i.e.
realizations of ~u(k) ∈ Rdij ),

• ~B = (B1, B2, . . . , BN )T is the state-emission vector,
where each element Bi (1 ≤ i ≤ N ) is an output bi-
dimensional distribution of possibility. Bi(~y) = p(~y(k) =
~y|x(k) = i) denotes the degree of possibility of observing
the output vector ~y(k) = ~y at time k while being in the
state x(k) = i. The sample space of ~y(k) is continuous
(i.e. realizations of ~y(k) ∈ Rbi ).

With this model, the evaluation problem is put in these
terms: Given the parameters Θ =< ~π,A, ~B > of the model
and an input sequence ~u1:K of length K, compute the degree
of possibility of an output sequence ~y1:K to have been pro-
duced by the model, i.e. P?(~y1:K |Θ,~u1:K). The solution to this
problem (as well as the solution to the state sequence decoding
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Fig. 3: Possibilistic network expressing conditional dependencies for
an P-IOHMM. The model is said ”hidden” because the states of the
processes they model are not directly observable but inferred from
inputs ~u and outputs ~y.

problem) is given by the following possibilistic version of the
Viterbi algorithm (which is derived from [12]).

1) Initialization

α(1)(i) = min
(
πi, Bi(~y(1))

)
, 1 ≤ i ≤ N

ϕ(1)(i) = 0
(II-B.1)

where α(1)(i) is the joint possibility of starting in state i
and observing ~y(1)

2) Recursion

α(k+1)(i) =

min

{[
max

1≤j≤N

[
min(α(k)(j), Aji(~u(k)))

]]
, Bi(~y(k+1))

}
(II-B.2)

ϕ(k+1)(i) = arg max
1≤j≤N

[
min(α(k)(j), Aji(~u(k)))

]
for 1 ≤ k ≤ K − 1, 1 ≤ i ≤ N ,

3) Termination

P?(~y1:K |Θ,~u1:K) = max
1≤i≤N

[
α(K)(i)

]
(II-B.3)

X ?(K) = arg max
1≤j≤N

[
α(K)(i)

]
(II-B.4)

4) Estimated hidden state sequence backtracking

X ?(k) = ϕ(k+1)(X ?(k+1)), k = K − 2,K − 3, ..., 1
(II-B.5)

III. POSSIBILISTIC INPUT/OUTPUT HIDDEN
SEMI-MARKOV MODEL

In this section, the P-IOHMM previously described is
extended with temporal aspects. In the context of assessing
CPS effectiveness, handling temporal aspects allows to cover a
broader range of systems, e.g. aiming at controlling processes
with intrinsic inertia (e.g. thermal process). This model is de-
noted as Possibilistic Input/Output Hidden semi-Markov Model
(P-IOHSMM). Temporal aspects are handled at state-transition
and state emission levels. It extends P-IOHMM (Section.II-B)

by allowing state transition and emission possibilities to also
be conditionally dependent on the amount of time that has
elapsed since the last entry into the current state. To this
end, the P-IOHMM model is extended with two additional
elements:
• ~Sd = (Sd1 , Sd2 , . . . , SdN )T is the state duration vector

where each element Sdi (1 ≤ i ≤ N ) is a one-
dimensional distribution of possibility. Sdi(z) (z ∈ N)
is the degree of possibility of being in the state x(k) = i
during z consecutive observations1.

• Td is the N × N state-transition duration matrix where
each cell Tdij (1 ≤ i, j ≤ N ) is a one-dimensional
distribution of possibility. Tdij (z) (z ∈ N) is the degree
of possibility for the state-transition Aij to last during z
consecutive observations. In other words, it is the elapsed
time required for the output of the next state x(k+1) = j
to get stabilized (settling time) with Tdij < Sdj .

Then, the notion of unknown state is introduced, i.e. state
that is not explicitly defined in the model. This is particu-
larly relevant for state-transitions for which a settling time
is allowed and during which the state of the system might
be undefined (transient state). Thus, an unknown state x? is
defined as being a state where the possibility of being in any
defined state is equal to 0 (II-B.1, II-B.2 and II-B.5):

x?
(k) =

{
X ?(k) if

∑N
i=1 α(k)(i) > 0

−1 otherwise
1 ≤ k ≤ K

The main idea behind our approach is then to extend the
Viterbi algorithm in order to reveal unknown states in the
decoded state sequence. Thus, one can leverage the decoded
state sequence obtained from this model for computing the
state and state-transition durations. Algorithms are detailed in
Appendix.A. Furthermore, some explanations are provided in
Section.V-D and Fig.10.

To the best of our knowledge, this approach is new. Al-
though different, it is worth noting the work done on pattern
recognition using temporal fuzzy automata [17].

IV. AGGREGATING DEGREES OF POSSIBILITY

In the previous section (Section.III) a new modeling frame-
work has been introduced for assessing, through the degree
of possibility, the CPS behavioral effectiveness by taking into
account temporal constraints. In this section, the case where
multiple behaviors (controlled either by one or multiple CPS)
are simultaneously assessed within the physical environment
is investigated. Our intention here is to address this issue glob-
ally, i.e. obtain a global behavioral assessment from the local
assessments. To this end, the Choquet Integral aggregation
operator is leveraged. This operator is widely used for multi-
criteria decision making [18] and preferences modeling [19].

Let C = {c1, c2, . . . , cn} be the finite set of criteria. A
capacity [20] is a set function µ : 2C → [0, 1] satisfying:
• ∀A,B ∈ 2C , A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonicity)

1The elapsed time is given as the number of observations and consequently
it depends on their sampling rate.



• µ(C) = 1 (normality)
• µ(∅) = 0

Thus, µ({k ∈ 2C}) is the weight of the criterion k.
Let X = {x1, . . . , xn} ∈ Rn+ the scores obtained for each

criterion. The Choquet integral of x for criteria C w.r.t. a
capacity µ is given by:

C

∫
µ

(X) =

n∑
i=1

(xσ(i) − xσ(i−1))µ(Cσ(i)) (IV-.1)

where σ is a permutation on X such that xσ(1) ≤ . . . ≤ xσ(n)

and Cσ(i) = {cσ(i), . . . , cσ(n)}.
Let us now consider an example where three behaviors are

assessed through the degrees of possibility p1, p2 and p3. Thus
|C|= 3 and X = {p1, p2, p3}. Now, if one consider X1 =
{0.43, 0.98, 0.7} and X2 = {0.84, 0.28, 0.91} with µ(C) =
1, µ(∅) = 0, µ({1}) = 0.3, µ({2}) = 0.2, µ({3}) = 0.3,
µ({1, 2}) = 0.5, µ({1, 3}) = 0.87 and µ({2, 3}) = 0.45,
then:

C

∫
µ

(X1) = 0.43 + (0.7− 0.43)µ{2, 3}+ (0.98− 0.7)µ({2})

= 0.607.
(IV-.2)

C

∫
µ

(X2) = 0.28 + (0.84− 0.28)µ{1, 3}+ (0.91− 0.84)µ({3})

= 0.788.
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Fig. 4: Choquet integral graphical representation. The dashed
surface is equal to the Choquet integral c

∫
µ
(X1) where X1 =

{0.43, 0.98, 0.7} (see IV-.2)

Choquet integral has interesting properties [21]. In particular
it doesn’t assume that criteria are independent to each other.
For instance [22], in the previous example:
• µ({1}) +µ({2}) = µ({1, 2})⇒ additivity, i.e. c1 and c2

are independent,
• µ({1}) + µ({3}) < µ({1, 3}) ⇒ super-additivity, i.e.

coalition of c1 and c3 has a synergistic effect,
• µ({2}) + µ({3}) > µ({2, 3}) ⇒ sub-additivity, i.e.

coalition of c1 and c3 are redundant to each other.
Thus, capacity function, beyond representing the importance
of each criteria, also represents the importance of all their pos-
sible coalitions. [23]. The main difficulty here is to determine

the 2C weight values where the complexity of identifying these
values increases with the number of criteria. In the context of
this paper, a criteria corresponds to a behavior. The weight
values for each criteria ∈ 2C define the preferences of the users
w.r.t. the effectiveness of the behaviors (X = x1, . . . , xn).

V. EXPERIMENTS AND RESULTS

A. Environment Setup

The HOME I/O 3D simulation environment [24] is used
for validating the proposed model. This environment allows
to create and monitor a real-time smart home simulation
(see Fig.5). It makes available more than 400 I/O points for
interacting with lighting, heating and other smart home de-
vices. Additionally, it manages real-time simulation of power
consumption as well as brightness and thermal behaviors by
taking into account weather conditions, location and properties
of the building. Thus, as a basis for our experiments, a simple

Fig. 5: HOME I/O - A 3D interactive Smart Home Simulation

home automation controller using Home I/O together with
Scratch2 [25] has been developed. This controller is based

Fig. 6: Home I/O makes available more than 400 I/O points for
interacting with lighting, heating and other smart home devices



on simple Event Condition Action (ECA) rules allowing to
control room lighting and temperature (Fig.7).

Fig. 7: ECA rule example

B. Behavioral models
P-IOHSMM-based behavioral models are associated with

each room, covering expected behaviors for luminosity, tem-
perature and power consumption. An example for luminosity
is given in Fig.8. This model can be read as follows: while
a presence is detected in the room (movement sensor), its
luminosity must be higher than 2.52 (state x2). Otherwise it
could be any value (state x1). The model expects some settling
times to get the luminosity stabilized (Td1,2 , Td2,1 ). Although
the models described here are relatively simple, the proposed
approach does not limit their complexity. Actually, the only
limit is relative to the amount of sensors available within the
environment.

x1 x2

Trapezoidal(0.8,0.9,1.1,1.2)

RampDown(0.0,0.5)

RampDown(0.0,0.5) Trapezoidal(0.8,0.9,1.1,1.2)

RampDown(10.0,10.0)

B1 (luminosity sensor)B1 (luminosity sensor)B1 (luminosity sensor)

Trapezoidal(1.7,1.9,10,10)

B2 (luminosity sensor)B2 (luminosity sensor)B2 (luminosity sensor)

Td1,2= RampDown(25.0,50.0)

Td2,1= RampDown(15.0,20.0)

A11 (movement sensor)A11 (movement sensor)A11 (movement sensor)

A12 (movement sensor)A12 (movement sensor)A12 (movement sensor)

A22 (movement sensor)A22 (movement sensor)A22 (movement sensor)

A21 (movement sensor)A21 (movement sensor)A21 (movement sensor)

Sd2= RampDown(150.0,180.0)

Fig. 8: Expected behavioral model for luminosity (assuming 100ms
for the observation sampling rate).

Models are implemented as nodes and instantiated in a
Node-Red3 flow. Access to the 400 Home I/O points (sampled
every second) is achieved from a dedicated node.

C. Users’ profiles
Thus, for each room is obtained, through the possibility

measurement, the controller effectiveness for luminosity, tem-
perature and power consumption. However, one is interested

2Values are obtained from the simulation.
3https://nodered.org/

in obtaining a global score. To this end, the Choquet integral
aggregation operator is leveraged (Section.IV) and four dif-
ferent user preference profiles are defined, modeled through
capacity functions with three criteria (luminosity, temperature
and power consumption). An example is given in Fig.9. In this
example, the user is more interested in having the expected
luminosity and power consumption (µ(13) = 0.9), then the
expected temperature and power consumption (µ(23) = 0.75),
etc.

µ(C)µ(C)µ(C) = 1

µ(∅)µ(∅)µ(∅) = 0

µ(1)µ(1)µ(1) = 0.4

µ(2)µ(2)µ(2) = 0.2

µ(3)µ(3)µ(3) = 0.4

µ(12)µ(12)µ(12) = 0.65
µ(13)µ(13)µ(13) = 0.9

µ(23)µ(23)µ(23) = 0.75

Criteria CCC={Luminosity(1), Temperature(2), Power consumption(3)}

Fig. 9: Preference profile for user 1.

D. Results

Given the previously described environment, one can inject
some disturbances over time. For instance, lowering the shut-
ters, leaving windows open while the heating is on, etc. An
example is given in Fig.10:

1 A presence is detected in the living-room. At that point, a
state-transition occurs from state 1 to state 2 (see Fig.8).
The model allows a certain amount of time for getting the
required luminosity level (Td1,2= RampDown(25.0,50.0)).
However, the luminosity level in the room (~y1:K) does not
reach the required level after the time allocated and the
degree of possibility decreases.

2 This case is similar to the previous one except that the
state in progress (stateInProgress in Algorithm 2) is an
unknown state (the shutter is down, lowering down the
luminosity level below 1.7, and a movement is detected.
This situation leads to reach an unknown state). Thus,
the state-transition temporal constraint is computed from
to last valid state (state 1, lastValidState in Algorithm 2)
and the most possible next state (state 2, nextState in
Algorithm 2). Thus the state-transition timing constraint
applied is Td1,2= RampDown(25.0,50.0).

3 Here, the expected luminosity level occurs within the
expected time frame. Thus, the degree of possibility is
re-evaluated to 1.0.

4 Finally, this case exhibits the fact that the state du-
ration goes beyond the expected one (Sd2= Ramp-
Down(150.0,180.0)). Thus the degree of possibility de-
creases accordingly.

An application of our approach might be a dashboard ex-
hibiting the effectiveness of each monitored behavior along
with inhabitants satisfaction computed from Choquet integral
(Fig.11).
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Fig. 10: Simulation results. The length of the input and output sequences is set to 5 and the observation sampling rate is set to 100 ms



Fig. 11: An application of our approach might be a dashboard exhibiting the compliance of each monitored behavior (here, the overall
instantaneous power consumption along with the luminosity and temperature behaviors which are observed for each room) along with
inhabitants satisfaction obtained from Choquet integral operator.

VI. CONCLUSION

Cyber-Physical Systems (CPS) are computing systems
whose purposes are achieved from interactions with the phys-
ical world by means of transducers (sensors and actuators).
These systems pose new challenges in terms of dependabil-
ity, their behavior being affected by unanticipated physical
processes over which they have no control and which may
potentially hamper the achievement of their purposes (i.e.
uncertainties). It is now recognized that designers of such
systems can no longer lean, at design time, on comprehensive
and reliable models for anticipating and removing faults that
may arise once these systems are deployed. Instead, these
systems have to be monitored in vivo and evaluated for
effectiveness throughout their life cycle.

In this context, a new modeling framework, denoted as
Possibilistic Input/Output Hidden semi-Markov Model (P-
IOHSMM), has been introduced for describing the evolution of
the effects to be produced by the CPS. Moreover, an algorithm
for computing the likelihood of an observation sequence, here
given as a degree of possibility, has been defined, taking into
account temporal constraints. The degree of possibility pro-
vides us with a direct insight into the system effectiveness w.r.t.
the effects it is supposed to produce over time. This modeling
framework allows to cover a broad range of systems and
applications including those aiming at controlling processes
with intrinsic inertia (e.g. thermal process).

The case where multiple systems and applications are
simultaneously assessed within a given environment has been
investigated. So as to obtain a global effectiveness score, the
Choquet integral aggregation operator has been leveraged. This
operator allows to account for users’ preferences, enriching the
effectiveness score with a notion of satisfaction.

Finally the proposed approach has been validated through a
use-case in the smart-home domain. The results demonstrate
the soundness and efficiency of the proposed approach for
estimating the CPS effectiveness at runtime.

In the future, we plan to facilitate the description of the
effects to be produced by the CPS. Indeed, developing such
model might be a complex task for non expert people. To
this end, we will investigate end-user programming approaches
allowing to derive a model from simple behavioral rules.
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APPENDIX A
DETAILED ALGORITHMS

Algorithm 1: Computation of the most possible next state
1 Function NextState(Θ, ~u, stateFrom): int
2 nextState ← -1
3 weight ← 0
4 for i← 1 to N do
5 if Θ.A(stateFrom,i)(~u) > weight then
6 weight ← Θ.A(stateFrom,i)(~u)
7 nextState ← i

8 return nextState



Algorithm 2: Evaluation of the Degree of possibility

Member: stateInProgress
Member: lastValidState, last state whith value ≥ 0
Member: synchronized, indicates whether the algorithm is

synchronized with the sequences
Member: transDuration, total elapsed time since the last

valid state transition
Member: stateDuration, total elapsed time since entry in the

stateInProgress

Input: ~u1:K, the input sequence
Input: ~y1:K, the output sequence
Input: Θ, the P-IOHSMM model

Output: the degree of possibility of the last sequences

1 Function Evaluate(Θ, ~u1:K, ~y1:K): double
2 (

p?

X ?
)
← Viterbi’(Θ, ~u1:K, ~y1:K)

3 if stateInProgress is not initialized then
4 stateInProgress = X ?(1)

5 for k ← 1 to K do
6 Synchronization
7 if X ?(k) != stateInProgress then
8 if stateInProgress > 0 then
9 lastValidState = stateInProgress

10 transDuration = 0

11 stateInProgress = X ?(k)

12 if lastValidState > 0 then
13 synchronized = true
14 if stateInProgress > 0 and

stateInProgress!= lastValidState then
15 stateDuration = 0

16 if synchronized then
17 transDuration ++
18 stateDuration ++

19 State-transition duration constraint
20 if stateInProgress < 0 then
21 nextState ←

NextState(Θ,~u(k),lastValidState)
22 if nextState < 0 then p?(k) ← 0.0
23 else if Θ.Td

(lastValidState,nextState)
then

24 p?(k) ← Max(p?(k),
Θ.Td

(lastValidState,nextState)
(transDuration))

25 else if Θ.Td
(lastValidState,stateInProgress)

then
26 p?(k) ← Max(p?(k),

Θ.Td
(lastValidState,stateInProgress)

(transDuration))

27 State duration constraint
28 if stateInProgress > 0 then
29 if Θ.~Sd

(stateInProgress)
then

30 p?(k) ← Min(p?(k),
Θ.~Sd

(stateInProgress)
(stateDuration))

31 return Min(p?)

Algorithm 3: Computation of P?, X ? and x?

Member: X ?, contains the estimated state sequence
Member: p?, contains degrees of possibility computed for

each k, 1 ≤ k ≤ K
Member: lastInputVec, is the last vector, i.e. ~u(K), of the

previous input sequence

1 Function Viterbi’(Θ, ~u1:K, ~y1:K)
2 from ← 1
3 Initialization
4 if not synchronized then
5 α(1)(i)← min

(
Θ.πi,Θ.Bi(~y(1))

)
, 1 ≤ i ≤ N

6 ϕ(1)(i)← 0
7 from ← 2

8 Recursion
9 for k ← from to K do

10 x?
(k) ← true

11 for j ← 1 to N do
12 possibility ← −∞
13 for i← 1 to N do
14 if synchronized and k = 1 then input

←lastInputVec
15 else input ← ~u(k − 1)

16 if k=1 then weight ← Θ.A(i,j)(input)
17 else weight ←

min
[
Θ.A(i,j)(input), α(k−1)(i)

]
18 if weight > possibility then
19 mostLikelyState ← i
20 possibility ← weight

21 α(k)(j)← min
[
possibility,Θ.B(j)(~y(k))

]
22 ϕ(k)(j)← mostLikelyState
23 if α(k)(j) > 0 then x?

(k) ← false
24

25 if x?
(k) then

26 for i← 1 to N do
27 if k=1 then α(k)(i) = 1.0
28 else α(k)(i) = α(k−1)(i)

29 Termination
30 possibility ← −∞
31 for i← 1 to N do
32 if α(K)(i) > possibility then
33 mostLikelyState ← i
34 if x?

(K) then possibility ← 0.0

35 else possibility ← α(K)(i)
36 p?(K−1) ← possibility

37 lastInputVec ← ~u(K)

38 X ?(K) ← mostLikelyState
39 Trackback
40 for k ← K− 1 to 1 do
41 X ?(k) ← ϕ(k+1)[X ?(k+1)]

42 p(k) ← α(k)(X ?(k))

43 for k ← 1 to K do
44 if x?

(K) then X ?(k) ← −1


