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Abstract—IoT-based applications have long been limited to
collecting field information; at the edge of their underlying in-
frastructure, IoT devices utilization is mainly motivated by their
capacity at gathering environmental information from sensors as
means to support users in decision making. However, in numerous
domains like home automation, smart factory, intelligent trans-
portation systems, etc., so-called ’smart’ IoT-based applications
also involve devices interacting with the physical environment
through actuators. Throughout their life cycle, from the design,
the deployment to operation, the ability to prevent conflicting
actuation commands and antagonistic effects (possibly harmful),
represents a new challenge in the realm of trustworthy smart IoT-
based applications. In this paper, we introduce a complete flow for
identifying and resolving actuation conflicts at design time. The
proposed approach is part of the DevOps software development
life cycle. It advocates the reuse of conflict management solutions
through local resolution strategies, considering asynchronous
timings of targeted hardware platforms they are deployed on.
An illustration of the flow is provided on a use-case.

Index Terms—IoT, actuation conflicts, features interaction,
model driven engineering, trustworthiness, Discrete Event Spec-
ification Formalism, DevOps

I. INTRODUCTION

For a long time, IoT devices utilization at the edge of IoT-
based systems infrastructures, has been motivated by their
capacity at collecting environmental information from sensors,
paving the way for decision making support systems covering
a wide range of application domains from smart-health, smart-
city to smart-grid, etc. just to name a few. IoT devices being
often shared between applications, multi-layered architectures
thus appeared, commonly broken down into a three-layered
architecture : (1) a shared infrastructure layer, (2) a top layer
where applications are deployed and (3) an intermediate layer
ensuring the overall consistency between applications at top
level and the shared infrastructure at the bottom level. The
challenge addressed is then rather technological and aims to
provide the shared infrastructure layer with sensors access
control mechanisms [1].

However, new challenges appear as soon as it comes to
smart applications to control shared IoT-devices embedding
actuators that turn commands into physical effects. One of

these challenges is the management of actuation conflicts
that may arise as soon as different applications compete for
accessing shared actuators (direct conflicts) or shared physical
properties (indirect conflicts). For instance, let us consider
a smart-home scenario (fig.1); a first application controlling
lights and blinds for energy consumption reduction purpose,
compete with a second application contributing to users well-
being by controlling the same lights and blinds and any other
actuators relevant for this purpose. At any time, both appli-
cations are likely to trigger antagonistic commands to these
shared actuators leading a direct conflict to occur. Relying on
the previous scenario, one can also consider both applications
to control home temperature through heaters, coolers, blinds,
etc. In this context, an indirect conflict is likely to occur
when both applications trigger commands to the heater and
the cooler, i.e. to different actuators competing to the same
physical property, the temperature in that case. Relying on
actuators to achieve their purposes, IoT-based applications
are no longer isolated processes immune to physical effects
induced by concurrent applications operating in shared envi-
ronments [2].

Along with the technological challenge, actuation conflict
thus induces a semantical challenge; taking into account the
locality of the actuators and the physical properties they
interact with, is here essential, characterized by the concept of
“entity of interest” [3], [4]. This challenge cannot be ignored
nor be delegated to end-users [5] and aims to provide the
shared infrastructure layer with Actuation Conflict Manage-
ment (ACM) mechanisms. In the realm of trustworthy smart
IoT-based applications, conflict management is of paramount
importance and requires decision support tools that can assist
designers in identifying and resolving direct and indirect con-
flicts, and in deploying relevant, yet robust and safe ACMs [6].

In this paper, a complete flow for identifying and locally
resolving direct and indirect actuation conflicts in the realm of
trustworthy IoT-based applications is introduced. This research
is part of the ENACT European project [7] which aims to
provide complete DevOps support for trustworthy Smart IoT
Systems (SIS). The contribution is threefold:
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Fig. 1: Applications deployment and underlying direct/indirect conflicts at the edge of the infrastructure

1) Underlying the tools for actuation conflicts identification
and resolution, a metamodel, denoted WIMAC (Work-
flow and Interaction Model for Actuation Conflict man-
agement), is presented. On the basis of GENESIS [8]
deployment model, implementation models and a model
of the physical environment, it provides a language for
modelling inter-relationships between software compo-
nents and actuators at the edge of the infrastructure layer
along with their effects on the physical environment. The
proposed approach does not require an a priori knowledge
on applications internal logic,

2) DevOps approach aims to provide continuous and rapid
software deployment capabilities. In line with this ap-
proach, a set of pre-configured off-the-shelf and ready-
to-use ACMs are offered to designers, allowing local
resolution of conflicts identified in the design,

3) A complete formal verification flow is proposed for
designing reusable custom ACMs. Platforms at the edge
of the infrastructure are highly heterogeneous, resource-
constrained (communication delays, etc.) and likely gov-
erned by asynchronous events [9]. In this context, besides
logical properties, temporal properties verification’s is
proposed in Discrete EVent system Specification Formal-
ism (DEVS [10]), allowing to validate ACMs behaviour
for different implementation strategies. Moreover, DEVS
offers a common representation for different discrete
event modelling frameworks ACMs can be based on [11]
and, in end-of-pipe, allows to build a library of reusable
DEVS-based ACMs (a.k.a., DEVS kernels) targeting the
different implementation strategies (i.e., hardware plat-
forms)

II. RELATED WORK

The problem of identifying and resolving actuation conflicts
in the context of IoT-based applications is relatively new. Thus,
the scientific community’s efforts to address this problem are

still in their infancy and, while most existing solutions focus on
identifying conflicts, few focus on proposing their resolution
[12].

In [6] authors present a watchdog architecture for direct
and indirect actuation conflicts identification and resolution.
All actions requested by services involved are intercepted and
analysed for conflicts. In case of conflicts, their resolution is
achieved from (1) an Optimization-oriented Decision Making
(ODM) module using some pre-defined policies and (2), a
Preference Learning (PL) module, learning preferences from
users and further used in ODM module. In [13], authors ad-
dress both direct and indirect actuation conflicts identification
and resolution for large-scale IoT systems using formal meth-
ods. The approach relies on policies whose violation results
in conflicts detection. Actuation conflicts identification and
resolution are achieved through a centralized controller that
requires, among others, the functional logic of the software
components involved to be known. In [12] and close to [6],
authors propose an approach to detect direct and indirect
conflicts in a given set of distributed IoT applications with
respect to a set of rules that define the allowable and restricted
state-space transitions of devices. The proposed approach
requires all events to be intercepted for further analysis. For
each identified conflict, a set of remedial actions are suggested
to the user. Both identification and resolution mechanisms
are handled by centralized modules (Conflict Detector and
Remedial Action engine).

Although some of the above solutions propose conflicts res-
olution at runtime (e.g., [6]), most of them require an a priori
knowledge on the components of the system considered and
the rules governing their evolution [14]. They do not propose
local and reusable solutions to conflicts. On the contrary, they
implement global identification and resolution mechanisms
that are not easily reusable. Finally, no approach considers
the heterogeneity of software platforms at the edge of the
infrastructure and their temporal specificities characterized by



the asynchronism of the events around them. tackle large
number or

In [15], it is recognized that interactions between devices
are an increasing cause of safety and security violations whose
detection “requires a holistic view of installed apps, compo-
nent devices, their configurations, and more importantly, how
they interact”. This is the approach followed in this article
whose details are presented in the sequel.

III. OVERALL APPROACH

IoT-based applications often implement and devices that,
through actuators and sensors, have an immediate impact for
users who use them daily. Thus, facilitating the maintainability
of these applications, i.e. deploying in a transparent, rapid and
automatic way patches and updates both at the level of the
applications and the devices they implement, is all the more
important. In this context, the DevOps development approach
is a competitive differentiator, broadly applied in the IoT world
[16]. This approach aims to provide continuous and rapid
software deployment capabilities thanks to a set of tools and
models shared across stakeholders engaged in the process.

In the context of DevOps, tools for identifying and resolving
direct and indirect actuation conflicts can rely on deployment
and implementation models from which interactions of de-
ployed applications with the underlying infrastructure, down
to the devices and the sensors and/or actuators they embed,
can be extracted. So as to identify indirect actuation conflicts,
actuators description, i.e., the effects they produce and the
environment they operate in, has to be provided. This model,
denoted by physical environment model in the sequel, is gen-
erally not part of the deployment and implementation models.
Unless semantic annotations are added in deployment and/or
implementation models, it has to be provided by designers at
design time.

On the basis of these models, a global description model is
generated, relying on a metamodel denoted WIMAC (Work-
flow and Interaction Model for Actuation Conflict man-
agement). This metamodel (fig.2) provides a language for
describing inter-relationships between software components
and sensors/actuators at the edge of the infrastructure layer
along with their effects on the physical environment. WIMAC
metamodel main entities are the following:

- SoftwareComponents are black-box components. In this
context, an application could be a single SoftwareCom-
ponent or a composition of SoftwareComponents de-
scribed through an implementation model (e.g., Node-
Red flow). It is also worth noting that ACMs only rely
on input/output for infering software components inter-
relationships, identifying and resolving conflicts hereby,
keeping unchanged the software components logic,

- ActionComponents are SoftwareComponents controlling
transducers (i.e., sensors and/or actuators),

- PhysicalSystems are physical entities bounded in space
whose some of their physical properties evolution (e.g.
temperature in the kitchen), are driven by ActionCompo-
nents.

[0..*] ownedComponentLinks

[1..1] from [1..1] to

ActionComponent

strategy : EString
acmtype : EString

ACM

PhysicalSystem

[1..1] physicalSystem

[0..*] ownedSoftwareComponents

PhysicalProperty

[0..*] physicalProperty

key : EString
value : EString

[0..*] physicalProperty

IoTSystem

LinkComponentLink

SoftwareComponent

type : EString
id parent : EString

[0..*] composite

name : EString
id : EString

NamedElement

Fig. 2: WIMAC metamodel

The whole approach proposed in this paper for identifying
and resolving IoT-based applications actuation conflicts is
depicted in fig.3. A first tool extracts the WIMAC-based model
from the deployment, implementation and the physical envi-
ronment models. In the context of this paper, the deployment
model relies on GENESIS modelling language [8], providing
WIMAC extraction tool with necessary information on the
components to be deployed. The WIMAC-based model can
then be used to automatically identify points of direct and
indirect actuation conflict. From that point, conflicts resolution
can be achieved at two levels:

- At the first level, predefined conflict patterns are auto-
matically identified. Off-the-shelf and ready-to-use ACM
solutions are then proposed to designers to solve them,

- At the second level (optional), designers are provided
with tools for designing custom, yet robust and safe
ACMs solutions: (1) Conceptual models are specified in
the form of discrete event Finite State Machines (FSM),
their logical properties can be verified using state of
the art formal methods; (2) Acknowledging the fact that



platforms at the edge of the infrastructure are highly
heterogeneous and subject to asynchronous behaviours,
implementation models are specified in the DEVS formal-
ism [10] allowing to conduct simulations and temporal
properties verifications for different targeted platforms
and, in end-of-pipe, to generate their associated software
components. Once designed and verified, custom ACMs
can be added in off-the-shelf ACMs.

Finally, concrete ACMs are instantiated, and the WIMAC-
based model is transformed back to a GENESIS-based de-
ployment model; any subsequent design modifications trigger
a new conflicts resolution sequence. In the sequel, the two
aforementioned levels are detailed, i.e., actuation conflicts
identification and resolution using off-the-shelf ready-to-use
ACMs and the design of custom ACMs.

Deployment & implementation

WIMAC-based model Physical environment
model

models

transformation

Direct/Indirect conflicts
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Fig. 3: Actuation conflicts identification and resolution flow

IV. OFF-THE-SHELF ACM SOLUTIONS

DevOps approach aims to provide continuous and rapid
software deployment capabilities. To support this objective, a
tool has been developed relying on a common WIMAC-based
model to which graph and model transformation algorithms
are applied. The purpose of this tool is to automatically
identify conflict patterns and apply graph transformations to
instantiate off-the-shelf ready-to-use ACMs. Conflicts identi-
fication and transformation are defined by a set of predefined
Attributed Graph Grammar (AGG) rules [17] in the form of
attributed graphs. Algebraic graph rewriting via a Double-
PushOut (DPO) [18] approach is used for applying graph
transformations. In order for the tool to apply AGG-based

patterns search and graph transformation rules, the WIMAC-
based model has to be itself transformed into an AGG model
(fig.6). Examples of direct/indirect actuation conflict patterns
and their associated graph transformation rules are respectively
depicted in fig.4 and fig.5.
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Fig. 4: Graph rewriting rule for direct conflict
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Fig. 5: Graph rewriting rule for indirect conflict

Once actuation conflicts have been identified, a set of off-
the-shelf ready-to-use ACMs are proposed to designers. Each
ACM comes pre-compiled for a set of predefined deployment
target platforms. This approach requires designers of the
incriminated software components to find a trade-off on the
ACM to be instantiated before applications are deployed. Such
a collaborative work methodology is at the heart of the DevOps
approach.

In some particular cases, however, off-the-shelf ACMs may
not fit the needs, leading designers to develop custom ACMs.

V. CUSTOM ACMS DESIGN

While off-the-shelf ACMs instantiation are helpful for re-
solving common actuation conflicts patterns, it may be still
necessary for designers to develop custom, yet robust and
safe ACMs to address specific actuation conflicts. To this
end, Model Driven Engineering (MDE) tools are leveraged
allowing two implementation levels (fig.7):
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- At a first level, conceptual models allow custom ACMs
logical properties (e.g. completeness, safety, liveness,
etc.) to be formally verified by using state of the art
methodologies. In this paper, custom ACMs are thus
defined through Finite State Machines (FSM),

- At a second level, implementation models allow cus-
tom ACMs temporal properties to be formally veri-
fied through different asynchronous execution machine
strategies. In this paper, DEVS (Discrete EVent system
Specification) [10] formalism is leveraged for simulating
the different implementation strategies. It is worth noting
that it has been shown in [19] that any discrete event
behaviour can be expressed as a DEVS model.

Conceptual
model

Model
Checking

Logical
constraints

model
Implementation

Finite State Machine DEVS model

Simulations

constraints
Temporal

strategies

DEVS kernel

SoftwareComponent

HW plateforme-dependent

targeting different
middlewares

Fig. 7: Custom ACM design process

As part of the design of custom ACMs, DEVS formalism
has the following key advantages:

- It enables the encapsulation of synchronous discrete
event models into asynchronous environments. This is
of paramount importance when considering that soft-
ware components are likely to be deployed on different
resource-constrained hardware platforms at the edge of
the infrastructure, subject to timing constraints relative
to wireless communication protocols, computational ca-
pabilities, etc., leading asynchronous behaviours to likely
appear [9],

- It provides a common representation for different ex-
isting discrete event modelling formalisms (including
Petri Nets, FSM, and different state machines)[11]. Thus,
designers are not limited to a particular modelling frame-
work when designing custom ACMs,

- It allows to build a library of reusable DEVS-based
ACMs (a.k.a., DEVS kernels) targeting different imple-
mentation strategies (i.e., hardware platforms).

In this paper, DEVS-based ACMs are modelled through
DEVS atomic models defined by (fig.8)

DEVSAtomic =< X,Y, S, δint, δext, λ, ta > where

– X = {(p, v)|p ∈ InputPorts, v ∈ Xp} where InputPorts
is the set of input ports and Xp is the set of possible
values for these ports,

– Y = {(p, v)|p ∈ OutputPorts, v ∈ Yp} where OutputPorts
is the set of output ports and Yp is the set of possible
values for these ports,

– S is the set of system states,
– ta : S → R+ defines the lifespan for each state.

When ta(s) = ∞ the lifespan of the state s ∈ S is
unconstrained whereas ta(s) = 0 leads an immediate
transition to the next state,



– δint : S → S is the internal state transition function,
– δext : Q×X → S is the external state transition function

with Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]},
– λ : S → Y is the output function.

Sδext δint

ta λ

X

Y

System states

DEVS asynchronous implementation model

Asynchronous events

Atomic model

Fig. 8: DEVS atomic model

The behaviour of an atomic model can be understood as
follows [20]. Let us Consider that the system is in the state
s ∈ S at time t. Unless an external event occurs on one of
the input ports X , the system remains in state s for a time d
defined by d = ta(s). When ta(s) expires, the model sends,
on one of the output ports Yp, the value given by λ(s) and
evolves to a new state s ∈ S defined by δint(s). If an external
event x ∈ X occurs on one of the input ports Xp, before the
expiration of d = ta(s), it triggers an external transition. In
this case, δext(s, te, x) defines which state is the next state s′

(where s is the current state, te is the time elapsed since the
last transition, and x ∈ X is the received event).

The objective is then to define a set of asynchronous tim-
ings management strategies for targeted hardware platforms.
Several modeling and simulation tools have been developed to
facilitate this process [21], [22]. In the context of this paper,
DEVSimPy [20] tool is used.

Following this approach, a set of reusable strategies can
be developed and maintained, targeting different deployment
hardware platforms while keeping unchanged the conceptual
models. The final solution can then be compiled as C++, C#
or any high-level programming language for further deploy-
ment on middleware/EDGE solutions (node-red, crosser I/O,
etc.). Designing robust and safe custom ACMs may be quite
complex but it is worth noting that once designed, it can be
integrated as off-the-shelf solutions and reused as needed.

VI. ILLUSTRATION

To illustrate the flow described throughout this paper, let
us consider a simple use-case in the smart-office domain. In
a first step, two independent offices whose access is granted
either through a RFID card reader or a button are considered
(fig.9). In this example, two actuators are involved (door
locking system). The software management of these elements
is implemented on two Arduino boards attached to a Raspberry
Pi board (gateway).

On the basis of this model and the associated deploy-
ment and implementation models, a WIMAC-based model

Gateway (raspberry Pi)

Arduino (Button, LED, RFID)

Fig. 9: Two independent controlled access offices

is generated, modelling inter-relationships between software
components and actuators. For instance, the WIMAC-based
model associated to the illustration depicted in fig.9 is depicted
in fig.11. It is worth noting that the physical environment
model can be defined here by designers. It appears through
ϕ symbol in fig.11 and fig.12. In the context of this first
illustration, both actuators are associated with each office.

Given the WIMAC model, the actuation conflict identifica-
tion and resolution tools are executed. Two direct conflicts are
identified on the locks (indeed, doors can either be unlocked by
RFID card readers or buttons). ACMs instances are instantiated
at the conflict points as depicted in fig.11. In this figure, one
conflict has been fixed by the designer, one remains to be
fixed. At that point, a set of off-the-shelf ready-to-use concrete
ACMs are proposed to designers who can select the most
appropriate given the situation (fig.10).

Fig. 10: Off-the-shelf ready-to-use ACM solutions.

Now, let us consider that the configuration is changed such
that offices are merged into a meeting room (fig.13). Actually,
the deployment model remains identical, only the physical
environment model is modified (fig.12) to reflect the fact that,



Fig. 11: Two direct conflicts are identified, one has been fixed by designer, one remains to be fixed.

Fig. 12: An indirect conflict is identified in addition with the two previously identified direct conflicts.

under this new configuration, both actuators (door locking
systems) impact the same physical environment (the meeting
room).

In this context, besides direct conflicts previously identified,
an indirect conflict is also identified. In this particular case,
this conflict is expected and does not lend to consequence in
the context of multiple access to a room. Thus, the indirect
conflict manager can be replaced with a simple passthrough
ACM.

VII. CONCLUSION AND PERSPECTIVES

In the realm of trustworthy IoT-based applications, actuators
implementation requires new development tools to help de-
signers identify and resolve, as early as possible, the direct and
indirect actuation conflicts that may occur and lead unexpected
(potentially harmful) behaviours. In this paper, a complete
flow, taking part of the DevOps software development life cy-

Gateway (raspberry Pi)

Arduino (Button, LED, RFID)

Fig. 13: Both offices are merged into a meeting room



cle, has been presented for identifying and resolving actuation
conflicts at design time. Unlike most existing approaches based
on centralized solutions, it advocates the reuse of conflict
management solutions through local resolution strategies.

The proposed flow facilitates and accelerates IoT-based
software development through a set of off-the-shelf ready-
to-use conflicts management solutions targeting (1) different
hardware platforms with different asynchronous timing spec-
ifications thanks to the Discrete EVent system Specification
Formalism (DEVS) validations and (2) different middleware
(node-red, crosser io, ThingML, etc.) taking into account
devices heterogeneity at the edge of the infrastructure. Oppor-
tunity is given designers to develop reusable custom ACMs
from conceptual models (Finite State Machine (FSM) have
been used in the context of this paper but any discrete
event based formalism can be used depending on designers
preferences) whose logical constraints can be verified through
state of the art formal verification techniques, comprehended
with DEVS-based implementation models for asynchronous
timings strategies verifications.

Some investigations and improvements are envisioned. The
proposed flow has been validated in the Smart-office do-
main, involving a dozen applications and actuators. We do
plan to stress to proposed flow in the smart-city domain
which involves much more applications and actuators. For
the time being, off-the-shelf ACMs are pre-synthesized for
a set of platforms. We do plan to have it synthetized on
the fly depending on the targeted platform specified on the
deployment and implementation models thus allowing to only
record conceptual models. A second improvement envisioned
consists in leveraging web semantics technologies for inferring
direct and indirect conflicts and proposing relevant ACMs on
the basis of semantic annotations added into the deployment
and implementation models.
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