
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

1

Aspects of Assembly and Cascaded Aspects of Assembly:

Logical and Temporal Properties

Nicolas FERRY1,2, Jean-Yves TIGLI1, Stéphane LAVIROTTE1, Gaëtan REY1 and Michel RIVEILL1

1 I3S, University of Nice – Sophia Antipolis

Sophia Antipolis, France

{ferry, tigli, lavirott, rey, riveill}@polytech.unice.fr

2 CSTB (Centre Scientifique et Technique du Bâtiment)

Sophia Antipolis, France

Abstract
Highly dynamic computing environments, like ubiquitous and

pervasive computing environments, require frequent adaptation

of applications. This has to be done in a timely fashion, and the

adaptation process must be as fast as possible and mastered.

Moreover the adaptation process has to ensure a consistent result

when finished whereas adaptations to be implemented cannot be

anticipated at design time. In this paper we present our

mechanism for self-adaptation based on the aspect oriented

programming paradigm called Aspect of Assembly (AAs). Using

AAs: (1) the adaptations process is fast and its duration is

mastered; (2) adaptations’ entities are independent of each other

thanks to the weaver logical merging mechanism; and (3) the

high variability of the software infrastructure can be managed

using a mono or multi-cycle weaving approach.

Keywords: Aspect oriented programming, Context-awareness,

Dynamic adaptation, Component Based Software Engineering.

1. Introduction

Background and motivation: Ubiquitous computing

relies on processing units present everywhere, at any times

and in any things. The software infrastructure, on which a

ubiquitous system is based, appears to be dynamically

populated by the functionalities of such devices. Indeed,

these services, potentially numerous, heterogeneous and

mobile, may appear or disappear into it. These three

characteristics (multiplicity, heterogeneity and mobility)

induce the high variability of this infrastructure and

therefore of ubiquitous systems. They must be adapted to

this infrastructure and the adaptation mechanism must be

able to manage this variability. Moreover, because of

devices mobility, it is not possible to predict a priori

which adaptations will be applied, but also how they

should be composed. And all this must be achieved whilst

maintaining reasonable and mastered response times.

The problems: In this paper, we address the issue of

ensuring the continuous and dynamic adaptation of an

application to changes occurring in its infrastructure (also

called operational context), whilst considering the

unpredictability and variability of this infrastructure, in a

timely fashion, with mastered response time. Unlike

approaches in which all the configurations or all the

various compositions of adaptations are anticipated (and

then bounded) at design time [1,2], we want to bring out

(emergence) applications [3] according to their

infrastructure in an unanticipated [4] manner. Thus,

adaptations have to be independent of each other and the

adaptation mechanism must be able to compose them,

whilst ensuring the consistency of the resulting

application. The variability that must manage the

adaptation mechanism spreads on two axes: (1) on the

devices available for a configuration described in an

adaptation and (2) on the adaptations to compose. An

adaptation entity does not have to be aware of others in

order to be composed with them, ensuring a good

separation of concerns and facilitating the evolution of

adaptation concerns.

Such adaptations should be made whilst considering the

dynamics of the changing infrastructure, to ensure that

stable and usable applications are maintained. Adaptation

response time is a major challenge for ubiquitous systems.

As highlighted in [5], a ubiquitous system must not be too

slow in reacting to changes, and should, for example, not

use a service that is no longer present in its infrastructure.

Moreover, the adaptation period should be sufficiently

short to ensure that the system is not unavailable, or

partially unavailable, for unacceptably long periods of

time. However, response time is often ignored by projects

requiring complex context processing, such as ontologies,

for which execution time is unbounded [6], sometimes

requiring several seconds [7].

Our solution: We have seen that in the field of ubiquitous

computing, adaptation should be dynamic. In order to

manage the heterogeneity of the devices included in the

infrastructure of an application, we rely on service-

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

2

oriented middleware [8], providing mechanisms to monitor

it. Our mechanism for self-adaptation is primarily

dedicated to service-oriented middleware whose services

are orchestrated using component assemblies [9, 10].

These middleware also provide a range of services to

manage the appearances and disappearances of services,

which are directly implemented in the appearance and

disappearance of components in the platform [11]. As we

can see in the literature [12,13,14], compositional

adaptation [15] is well suited to handle infrastructural

changes. The loose-coupling between components

facilitates their dynamic replacement, which makes them a

particularly suitable approach for adaptive systems using

compositional adaptation [16, 17].

As highlighted in [2], adaptation logic and application

business logic have to be clearly separated. Moreover,

since we do not want to anticipate the adaptations, they

must be encapsulated into entities independent of each

other. It allows them to be deployed without a priori

knowledge of other adaptations. In order to achieve such

adaptations, we propose an original approach based on

aspect-oriented programming (AOP) [18], called "Aspect

of Assembly" (AA). AOP is a way to achieve separation

of concerns (SoC). Dynamic aspects allow adapting an

application at runtime whilst encapsulating the adaptation

into aspects [19]. Thanks to this encapsulation, the

modularity of adaptations is improved and they can be

more easily reused. However, classical AOP approach still

suffers limitation in term of software evolution because

interference management at runtime needs to be

anticipated [20]. AA is a mechanism for the self-

adaptation of an application to changes occurring in its

infrastructure. Adaptations are in the form of

compositional adaptation of components assembly with

short and mastered response times. The adaptation process

can involve one (mono-cycle) or several (multi-cycle)

weaving operations (Fig. 1). Their composition does not

require to be explicitly managed, and thus an AA can be

deployed without considering others AAs.

Case study: Throughout the paper we will use the

following scenario to illustrate these concepts. This

scenario takes place in the context of a hospital. The

hospital, for ecological reasons, decided to implement a

policy to reduce its energy consumption. Eve is a nurse at

the hospital, when she enters a room the system would

enable the switch to open the shutters rather than turning

on the lights when the outside brightness is sufficient. She

is entering in the room 500, newly assigned to an old

woman who is visually impaired. The old woman’s profile

is a priority when entering a room, so in such a case

artificial lighting is always used. In section 3.3 a more

complex scenario, used in the French ANR project called

"Continuum" will also be used to illustrate our work in

terms of response times.

Outline: The remainder of our paper is organized as

follows: first we will present AAs, their mono-cycle

weaving and our approach to manage interferences

between AAs in an unanticipated way. In the following

section, we will present their multi-cycle (Fig. 1) weaving

and explain how it can preserve the same properties as the

mono-cycle approach. Afterwards we will conduct a

performance evaluation of the approach and show that

adaptations’ times are mastered. Finally we will study

some related works before concluding.

Fig. 1 Mono and multi-cycle weaving timelines

2. Aspect of Assembly

Aspect of Assembly (AA) is a model based on AOP for

adaptation schemas. They allow structural reconfiguration

of components assemblies at runtime, keeping black-box

property of components. Modifications they induce are

thus based on adding components and bindings between

them. In traditional AOP, aspects are composed of

pointcuts and advices. Pointcuts point out “where” to

inject the code to weave while advices describe the code to

be injected thanks to the aspect weaver. Pointcut genericity

allows an aspect to be woven in many parts of the

application. Thus, AOP minimizes code dispersion,

grouping it into reusable entities. Joinpoints represent all

hooks of applications where advices can be woven.

Classically, aspect languages provide mechanisms to add

behavior to pointcuts thanks to operators after, before and

around [18]. In the context of AA, these concepts are still

valid but with some deviations. An advice describes a

structural reconfiguration of a components’ assembly,

while a pointcut identifies components’ ports on which

changes will take place. Thus, joinpoints are all entities of

the assembly that structurally represent the application, on

which changes will take place: components and their ports.

The result of the weaving of AA is a set of basic

instructions such as adding a link or a component. Thus,

our approach can be applied to several types of dynamic

components platforms like SCA [10] or SLCA [9], for

instances.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

3

Pointcuts are defined as sets of filters on joinpoints meta-

data (port ID or name, port type). Those filters construct

lists of parameters satisfying the list of variables of the

associated advice. They are the set of components ports on

which the advice will be woven. For each generated list

including a joinpoint for each pointcut variable, the advice

is duplicated and the variables are syntactically replaced in

the advice to match the base assembly joinpoints. Thanks

to pointcuts, AAs are applied on components assemblies

which are not necessarily known a priori. Pointcut are a

way to manage the variability of the software

infrastructure, thanks to duplication to manage

homogeneous crosscuts [21], and to wildcards and

metadatas to manage heterogeneous crosscuts [21]. For

our experiments, we choose for convenience to express

filters using some simple pattern matching as regular

expressions on components, ports name and meta-data,

and meta-data evaluation. As an example, the pointcut

from the AA presented in Figure 2 describes that the

variable Shutter will be associated to all pairs

composant.port whose names is beginning by shutter with

a port SetState. Line 3 associates the variable light

components whose type is light and with energy

consumption under 50W.

Advice is not a piece of code to be woven into the

application’s base code, but a set of component instances

and links that will be woven inside an assembly of

components. They can be considered as component

assembly factories. To do this, advices are composed of a

set of rules. These rules define which components or

bindings between components have to be instantiated. An

advice describes a set of adaptation rules to be applied on

variable components defined in pointcut. Advices are

basically specified in a DSL that we will present in the

next section. We will describe later in section 2.3 how this

language can be extended with a well-defined set of

composable operators. Their merging with each other will

be well-defined and to provide some properties in order to

compose adaptations in an unanticipated way.

2.1 A language for Aspect of Assembly advices

Table.1 Advice language keywords

Keywords / Operators Description

Port types comp.port A provided port.

comp.^port A required port.

Rules for

structural

adaptations

comp : type To create a black-

box component

comp : type(prop=val) To create a black-

box component

and to initialize

properties

required_port ->

(required_port)

To create a link

between two ports.

provided_port ->

(required_port)

To rewrite an

existing link by

changing the

destination port

Advices are based on three types of rules: (1) the addition

of black-box components, (2) rewriting links between

components of the assembly and (3) the creation of new

links. Rewriting involves components ports, it consists in

forwarding an input port or redirecting a message (output

port). These rules are identified thanks to two key words,

‘:’ for black-box components instantiation and ‘->’ for

rewriting and creating links.

Figure 2 presents an example of AA written using the

basic language defined in Table 1. We define an

independent adaptation schema for our scenario. Another

AA is required to achieve the scenario; it will be described

later (Figure 5). It aims to link a switch and an RFid reader

to a decision component which is bound to the shutter and

the light. When an ID is read, the decision component

checks if the ID is valid and if no visually impaired person

is in the room then allows the user to turn on the light and

automatically close the shutter (or inversely). Let’s

consider that some proxy components to communicate

with the light, switch, shutter and RFid are generated and

instantiated into the component assembly. We will now

study the code of this aspect. It is called

IdentityManagement. The four variables Shutter, RFid,

light and switch associated to the name of the advice

describe the joinpoints, identified by the pointcut matching

that will be used in the advice. At lines 2 and 3 some

black-box components are added. The rules described at

lines 6, 8, 10, 12 and 14 define five new links. For

exemple, line 12 aims to link the required port

DecisionEntity.^ShutterManagementEvent to a port

associated to the variable Shutter, for instance

Shutter.SetState.

Pointcut:

1 Shutter:=/Shutter*.SetState/
2 RFid:=/rfid.*/
3 light:=/*(@type=light&energyConsumption < 50).*/
4 switch=/switch.^value_Evented_NewValue/
Advice :
1 schema IdentityManagement(Shutter,RFid,light,switch):
2 Decision : ’WComp.BasicBeans.DecisionEntity’;
3 Timer : ’WComp.BasicBeans.Timer’;
5
6 Timer.^Status _New_Evented_Value -> (Decision.SetTime)
7
8 Rfid.^ value_Evented_NewValue->(DecisionEntity.Manage)
9
10 switch ->(DecisionEntity.Manage)
11
12 DecisionEntity.^ ShutterManagementEvent->(Shutter)
13
14 DecisionEntity.^ LightManagementEvent->(Light.SetState)

Fig. 2 IdentityManagement Aspect of Assembly

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814
www.IJCSI.org 4

2.2 Mono-cycle weaving

In the manner of automaton cycles consisting of

successive phases of (1) data acquisition, (2) processing

and ultimately (3) production of outputs, we speak of

weaving cycles. For a cycle, weaver's input are: an

assembly (the original application), called the base

assembly, and a set of AAs. As a result, the weaver

produces a final assembly (the adapted application). Figure

3 presents the weaving cycle involving the two AA of our

scenario. Because the base assembly is composed of the

five required components, both AAs are woven. A

weaving cycle can be triggered on the appearance or

disappearance of a component in the assembly or when

they are selected or unselected. Each weaving cycle is

processed on the base assembly free of any AA adaptation.

The number of type of configurations of the system that

can be described in a weaving cycle is equal to 2
card(An)

where An is a set of AAs. This means that the number of

configurations described is where pd is

the probability of having AAs duplicated. The weaving

process can be formally written as: T(Ass0;An) = Assn+1

where Ass0 is the base assembly. This means that without

using AA assemblies would have been

designed to provide the same variability to the system.

Fig. 3 Mono-cycle weaving

The weaving process can be divided into 5 majors steps

(Fig. 4). First, pointcut matching is a function that takes a

set of joinpoints from the base assembly and pointcuts,

from a set of selected AA, as input. Its goal is to find the

joinpoints on which advices will be woven… The second

step aims to generate several combination of the joinpoints

obtained during the pointcut matching. Each combination

of joinpoints is composed of a joinpoint for each pointcut

rule. The third step is called the advice factory. It

generates instances of advices, replacing variable

components in advices of selected aspects by joinpoints

from combination obtained during the second step.

Instances of advices describe modifications to be woven in

the base assembly of components. Based on pointcut

matching and joinpoint combination results, an advice can

be woven several times during the same weaving process.

These three first processes of the weaving mechanism are

duplicated for each AA processed. Meaning that for each

AA and for each process an algorithm can be selected.

Finally, the composition engine merges all instances of

advices with the initial assembly. It generates a single

instance of advice that will be woven as the final

assembly.

Fig. 4 The weaving process

2.3 Mono-cycle merging

The composition process can introduce interferences

between AAs, between advices’ rules. Interference is

defined as: “a conflicting situation where one aspect that

works correctly in isolation does not work correctly

anymore when it is composed with other aspects.” [22].

Various techniques exist to manage these interferences as

the precedence between aspects that can be found in

classical AOP [23] or the use of contracts as in [16]. They

add some global predicates to aspects that an aspect can

use to refer to another aspect, limiting the separation of

concerns.

Our approach is to merge rules that interfere with each

other and not to prevent explicitly interferences. It allows

having AAs independent of each other that can be

composed in an unanticipated manner and that can be

easily added or removed by various actors. For this

composition to be deterministic, meaning that the

resolution of interference produces the same result,

regardless of the order in which AAs are woven, it is

necessary for the composition operation, as for the

weaving operation, to be symmetrical. This symmetry

property itself consists of three sub-properties:

associativity, commutativity and idempotency. These

properties: (1) allow the weaving process to be

deterministic, (2) ensure that the order in which AAs are

Assn+1

Ass0

Ass0 Assn+1

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

5

woven does not matter, (3) ensure that the system is

confluent (because deterministic and symmetric) and (4)

terminal (thanks to idempotency). In order to respect this

property, it is necessary that:

 A pointcut cannot express negatives pointcut rules

(i.e. rule requiring the absence of a component)

(This may lead to the loss of the commutativity

property).

 A pointcut cannot match components instantiated

by another AA. (This may lead to the loss of

commutativity and associativity properties).

 An advice cannot suppress components or bindings

explicitly (This may lead to the loss of associativity

and commutativity properties). Components or

binding are suppressed if the AA is withdrawn.

 The rules’ composition operation is symmetrical

Within these constraints, the only possible interference

between AAs appears when a single joinpoint is used in

several advices’ rules. Those joinpoints are called shared

joinpoints.

To enable the merging of these interfering rules with the

previous properties, we constrain the advice language.

Whatever the language used to write the advices, it must

be based on a limited set of operators with a well-known

semantic that can be merged. To be symmetrical, the

merging operation of advices’ rules requires that the

merging operation of these operators is symmetrical. This

property must be ensured between all operators. Adding an

operator will require demonstrating that its merging with

any other operator is symmetric. Those operators do not

necessarily need to be themselves symmetrical.

For example, we defined the ISL4WComp language [24]

as an extension of the previously defined DSL.

ISL4Wcomp is based on the ISL Interaction Specification

Language that describes patterns of interactions between

independent objects [25]. ISL4Wcomp adapts these

specifications to consider interactions based on messages

or events between components. In this language, 6

operators were defined; they are presented in Table 2.

Table.2 ISL4WComp operators

Operators … ; … sequence

… || … parallelism

If(condition)

{…}else{…}

Condition is

evaluated by a

blackbox

component

Nop Nothing to do

Call Allow to reuse the

left part of a rule in

a rewriting rule

Delegate Allow to specify

that an interaction

is unique in case of

conflict

As an example, the aspect presented in Figure 5 proposes

to adapt the behavior of the AA described in Figure 2 by

adding an energy saving concern as described in the

scenario. To be applied it requires a brightness sensor, so

that the user can turn on the light only when the brightness

is under a defined threshold. Moreover, the new assembly

opens the shutter when the user tries to switch on the light

while the brightness is too high. We will now study the

advice’s code of this AA. It is called brightness_light. The

three variables light, brightness, shutter associated to the

name of the advice describe the joinpoints, identified

thanks to the pointcut matching, that will be used in the

advice. This AA highlights the three types of rules

previously defined. At lines 3 and 4 some black-box

components are added. The threshold component is

instantiated with the property threshold up to 10. A

property is a public variable from a component available

through its interface. Lines 6-10 define an input port

rewriting rule. All links connected to the input port

(method) SetState will be rewritten. This rule involves the

operator if, this mean that a if component will be

instantiated. The condition to be evaluated by this

component comes from a call on the method IsReached

from the threshold black-box component. If the condition

is true, then the shutter is open, else the rewritten link is

done. Rules defined at lines 11, 12 allow defining two new

connections. As an example, the second rule links the

output NewAverage from the black-box component

Average to the input method SetValue from the black-box

component threshold.

Pointcut

1 light:=/light[[:digit:]].SetState/
2 Shutter:=/shutter[[:digit:]].SetState/
3 Brightness:=/brightness*.*/
Advice:
1 schema brightness_light (light, brightness, switch) :
2
3 threshold : ’BasicBeans.Threshold’ (threshold = 10)

4 Average : ’WComp.BasicBeans.Average’;
5
6 light -> (
7 if (threshold.IsReached)
8 {Shutter }
9 else
10 {call})
11 Brightness.NewValue -> (Average.AValue)
12 Average.NewAverage -> (threshold.SetValue)

Fig. 5 Brightness_Light Aspect of Assembly

Thus, the composition mechanism embeds a merging

mechanism based on theses operators. Conflicting rules

are expressed in the form of trees. Operators are the nodes

of these trees and port their leaves. Merging two trees

consist in merging the operators according to pre-defined

rules. The 24 rules are defined in [24]. The merging of

each of these operators has been defined as symmetric in

[24]. The merging operation of two operators can be

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

6

described with several rules. As an example, the merging

operation of two if operator is based on two rules. Lets

write as the merging operation,

if(condition1,thenA,elseB) if(condition2,thenC,elseD) is

equal to:

 If condition1 = condition2 :

if(condition1,thenA thenC, elseB elseD)

 If condition1 ≠ condition2:

if(condition1,if(condition2,thenA thenC, thenA

 elseD), if(condition2, elseB thenC, elseB

elseD))

The merging operation is then propagated to the leaves.

When two rules adding two bindings do not use operators

and are conflicting, the result of the merging operation

consists in adding a parallel operator between the two

bindings. This also ensures the symmetry property of the

merging operation. Finally, a rule adding a black-box

component cannot cause a conflict since an AA cannot

reuse a component instantiated by another AA. Once the

trees are merged, they are transformed into elementary

instructions (add/remove component/binding), operators

are then represented in the assembly by components with a

well-known semantic.

As an example, when both AAs presented in section 2.1

are composed, a conflict occurs on the port switch.^on.

The result of the merging operation of the two conflicting

rules is described in Figure 6.

Fig. 6 An example of ISL4WComp rules merging

In this example we can see that the merging operation is

propagated to the leaves. First it merges the message

light.on and the operator if (step 1). Then it merges the

message light.on and the nop operator in the then branch

of the if and the message light.on and the call operator in

the else branch (step 2). Because nop is an absorbing

operator the result for the then branch is nop. Conversely,

call is a neutral operator so the result for the else branch is

light.on (step 3).

2.4. Multi-cycle weaving

AA’s weaver also allows to chain several rounds of

weaving so that an adaptation can be described using (and

be the result of) several weaving cycles. Thanks to this

multi-cycle approach, we will be able to decompose AAs

according to their functional production and to reuse a

functionality already woven.

Introducing this decomposition provides facilities for the

reuse of parts of an AA. It also improves its evolving

facilities. This means that it will be easier to identify

which part of the system remove or swap according to the

context. As an example, in our scenario, according to the

rooms visited by the nurse, the mechanisms to monitor the

brightness can change; it may be a sensor into the room or

a weather service of the hospital for not equipped rooms.

To make such changes, we must clearly identify the

functional production of an AA in order to know which

AA need to be exchanged and not to group all these

productions in a single AA. The latter would imply

rewriting the whole AA for each configuration. However,

an AA cannot reuse a component instantiated by others

AAs.

Therefore, the multi-cycle approach proposes to group

AAs according to the functionality they intend to weave

and to dedicate a functional group to a weaving cycle.

Classically, for a ubiquitous application, we will create

three groups and therefore three cycles of weaving: a cycle

for a group of AAs that produces the perception

mechanism, a cycle for a group of AAs that produces the

decision mechanism and finally a cycle for a group of AAs

that produces the action mechanism. The cycles are

ordered in such a way that the result of a weaving cycle

will be the base assembly for the next cycle of weaving.

Thus, a component instantiated in a weaving cycle can be

reused by AAs from the next weaving cycles through their

pointcut and thus in their advices. This will allows a

designer to divide an AA into several AAs. Then, AAs

may be triggered in a cascaded way, i.e. the application of

AAs for functionality from a concern in a cycle n-1 may

be the origin of the weaving of an AA in a cycle n. Thus,

the cycle number 0 is always woven on an initial assembly

blank of any AA. A weaving cycle n is always woven on

the result of the weaving cycle n-1. A weaving cycle in

this approach can be formally written as: T(Assn;An) =

Assn+1 where Assn is the assembly resulting from the

weaving number n. The whole weaving process can be

formally written as: Assm=T
m

(Am,T
m-1

(Am-1,…,

T
0
(A0,Ass0))).

The cascaded weaving of AA proceeds as follows: AAs

for the first cycle are woven, on the resulting assembly,

AAs for the second are woven and so on until the last

cycle. Then, the whole process will be restarted, beginning

with the cycle number 0. Each AA for functionality is

woven with other AA for the same functionality. So

between several AA for a same functionality (i.e. a same

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

7

weaving cycle), the symmetry property of the weaving

operation is preserved and interferences are managed.

Thanks to this decomposition, designing a concern will

often consist in writing a combination of AAs, called a

Cascade of AAs. All Cascades of AAs can be defined as

follows: a Cascade of AAs is an ordered set of unordered

sets of AA:

C = {{AA00...AA0j}, ..., {AAi0...AAij}}

A Cascade of AAs can be decomposed as a set of

cascades. The range of a set of AAs in a cascade defines

the weaving cycle for which the set is designated. A

Cascade of AAs does not necessarily contain a set of AAs

for each cycle. Various Cascades of AAs for various

concerns can be deployed simultaneously.

For example, in our scenario, we can identify two concerns

and then two Cascades of AAs: (1) assistance to the person

and (2) energy saving. The various AAs that we will

present in this section are distributed as shown in Figure 7

in the various weaving cycles.

Fig. 7 Decision module (AADecision)

At first, we will describe the concerns of assistance to the

person which has priority. This concern will involve three

rounds of weaving. The Cascade of AAs designed for this

concern is presented in Figure 7. Initially we will write a

first AA (Fig. 8) for a first weaving cycle. This is the

decision-making part of the system. It will be the link

between the perception part and the action part of the

system. Therefore, it will be heavily reused by other parts

of the behavior. We could have deployed AAs for the

perception mechanism first and AAs for decision in the

second cycle so that the decision part would be deployed

according to the perception mechanism. But, for this

scenario, it would have meant rewriting many times the

pointcuts part of the AADecision aspect according to the

perception mechanisms required for its application.

AADecision aims to instantiate a timer and a component

(decision) whose role is to indicate whether to turn the

light on or to open the shutters according to an identifier

and a time given as input.

Advice:
1 schema dec():
2 Decision : ’WComp.BasicBeans.DecisionEntity’;
3 Timer : ’WComp.BasicBeans.Timer’;
4 Average : ’WComp.BasicBeans.Average’;
5
6 Timer.^Status _New_Evented_Value -> (Decision.SetTime)

Fig. 8 Decision module (AADecision)

In two AAs for a second weaving cycle, we describe the

mechanism of perception that will be implemented in the

application. These two AAs (Fig. 9) aim to connect the

RFid reader and the switch to the decision component. So

when a badge is read by the reader or when the switch

changes its state, the decision-making module will be

informed of it.

Pointcut

1 RFid:=/rfid.*/
2 DecisionEntity:=/Decision[[:digit:]]/
Advice:
1 schema obs(DecisionEntity,RFid):
2 Rfid.^ value_Evented_NewValue->(DecisionEntity.Manage)

Pointcut:
1 switch:=/switch.*/
2 DecisionEntity:=/Decision[[:digit:]]/
Advice:
1 schema obs(DecisionEntity,switch):
2 switch.^ value_Evented_NewValue->(DecisionEntity.Manage)

Fig. 9 Perception modules for RFid and switch

(AARFid & AASwitch)

Finally, we must add some AAs (Fig. 10) to bind the

decision part to lights and shutters. These AAs are

destined to a third round of weaving. We design two AAs

to ensure that the system is still running even in the

absence of one of those two actuators.

Pointcut:

1 Shutter:=/Shutter.*/
2 DecisionEntity:=/Decision[[:digit:]]/
Advice:

1 schema action(DecisionEntity,Shutter):
2 DecisionEntity.^ ShutterManagementEvent->(Shutter.SetState)

Pointcut:

1 light:=/light [[:digit:]]/
2 DecisionEntity:=/Decision[[:digit:]]/
Advice:
1 schema ActionLight(light, DecisionEntity):
2 DecisionEntity.^ LightManagementEvent->(Light.SetState)

Fig. 10 Action modules for Store and Light

(AARollerShutter & AALight)

We will now consider the concern of energy consumption.

Similarly this behavior can be decomposed. AAs for

perception and AAs for decision from the other concern

are reused. Finally we create an AA (Fig. 11) for the third

weaving cycle to add a filter on a call to open the shutter

and to redirect those calls to the lamp according to the

brightness outside.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

8

Pointcut:

1 lum:=/light[[:digit:]]/
2 Shutter:=/shutter[[:digit:]]/
3 Brightness:=/brightness.*/
Advice :
1 schema action(lum,Shutter,Brightness):
2 threshold : ’BasicBeans.Threshold’ (threshold = 10)
3 Shutter.SetStatus->(
4 IF(threshold.reached){lum.setState}else{call}
5)
6 Brightness.NewValue -> (Average.AValue)
7 Average.NewAverage -> (threshold.SetValue)

Fig. 11 Action module (AALightLevel)

Since the application of these Cascades of AAs is done at

runtime, the reconfigurations of the system are also done

at runtime according to the underlying software

infrastructure. AAs from one cycle that are applied can

collaborate, be composed, with AAs to be woven in next

cycles dynamically. This composition is not explicit,

meaning that an AA cannot embed a rule to trigger another

AA.

Such compositions can be defined as opportunistic, since

an AA from cycle for functionality is applied whenever it

can. Since each AA is independent, each of them will be

evaluated and implemented according to the underlying

software infrastructure as classical AAs. Thus every AAs

of each cycle can be applied independently. Achievable

configurations of the systems are then numerous and

performed at runtime as the composition of AAs. The

multi-cycle approach improves the management of the

variability of the system compared to the mono-cycle

approach.

The number of achievable configuration for a set of AAs is

calculable. When AAs from various cycles require in their

pointcut, in order to be applied, some components from

AAs previously woven, this number of configurations is

reduced. In our scenario the aspect AADecision have to be

applied in order to weave others AAs from cycle 2 and 3.

In fact, such AAs can be considered as a single one,

meaning that AADecision and AALight can be consider as

a single AA. Then the number of types of configurations

that can be achieved in the multi-cycle approach is

described in Figure 12.

Fig. 12 Number of configuration that can be generated

In the scenario, action and perception concerns of the

system require, to be applied, the presence of the decision

part. The number of type of configurations that can be

achieved thanks to these cascades of AAs is 2
2

× 2
3
 = 32.

Using a mono-cycle weaving we could achieve 2
2
=4

configurations.

This ability to combine various AAs at runtime, more than

increasing the number of reconfigurations that can be

achieved using a minimal number of AAs, also serves to

increase the adaptability of applications to their

infrastructure for greater continuity of service, and greater

variability. Indeed, the various functionalities associated to

the various weaving cycles can be implemented in various

ways, according to AAs that can be applied. During an

appearance or disappearance of a device in the software

infrastructure of the application, the AAs that can be

applied are woven in an opportunistic way. The concern to

be set up in a weaving cycle is then always implemented

with the maximum AAs applied depending on the

underlying infrastructure. In this way, the loss in the

infrastructure of a device, used for a feature, does not lead

necessarily to the loss of the feature in the application.

Only parts of the functionality that cannot be woven are no

longer implemented. Similarly it becomes possible to

provide alternative mechanisms for these functionalities.

So, if a device is available and can do the same as the one

that just disappear, it can be used to replace it at runtime. It

adds variability and self-adaptation facilities to the specific

concerns addressed by a group of AAs. Moreover, it

provides a mechanism to manage the unpredictability of

ubiquitous systems.

As an example to change or add new sensors for location

and identification, only some AAs, similar to those

previously described (Fig. 9), need to be added. Several

AAs can be deployed simultaneously based on various

identification devices and can be applied indiscriminately.

Thus, sometimes the system will work with all these

sensors, sometimes only with some of them; and this

without to have to worry about it, because it is done at

runtime, once the AAs are deployed.

2.5 Multi-cycle merging

Various Cascades of AAs can also be composed. It

consists in the union of the sets of AAs of the same range

(i.e. to be woven in the same cycle). That is to say, AAs

from various cascades to adapt a same functionality are all

deployed in a same set.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814
www.IJCSI.org 9

The union operator is symmetric, so the order in which

combination are composed is not important. So the

weaving operation of various Cascades of AAs is

symmetric.

But the multi-cycle approach introduces a new type of

interferences between several weaving cycles. An AA for

a weaving cycle can have a side effect on AAs for next

cycles. An AA for a concern may trigger an AA from a

next cycle for another concern. This may be the cause of

an adverse side effect on the reconfiguration of the system.

The reverse is not possible. An aspect cannot remove a

component that was required to weave another aspect. This

type of interaction can be managed using namespace. To

each cascade can be associated a name and a namespace.

All the AAs included in the cascade, if they do not declare

their own namespace, belong to the namespace of the

cascade. An AA can declare its own namespace. Thus, two

AAs with the same base name, but belonging to two

cascades will not be the same if the two cascades do not

share the same namespace. Thus an AA belonging to a

namespace can reuse component from AAs from previous

cycles that belong to the same namespace. To achieve this,

to each component generated by an AA is associated the

namespace of the AA. Interactions can be managed in

three ways: (1) a cascade can be in a global namespace and

thus all other AA from other cascades can interact with it;

(2) the cascade is sharing its namespace with another

cascade and thus only the cascades in the same namespace

can interact one with each other; (3) the cascade do not

share its namespace with others cascades, thus no

interactions between cascades are permitted.

2.6 Synthesis

Aspects of Assembly are a mechanism to achieve

compositional adaptation of components assemblies. The

aspect oriented approach is pushed to its climax meaning

that everything is aspect. The application is described by

a set of aspects. The bootstrap is then the set of appearing

and disappearing components. Aspects are triggered at

runtime in response to changes in the operational context

of an application or in user preferences in an every time

weaving process. AAs are described using a constrained

language. The weaving process can be mono or multi-

cycle using some sets of set of aspects in what we call

Cascade of Aspects of Assembly. The multi-cycle

approach allows managing the high variability of the

operational context of an application by combining AAs

in an opportunistic and not explicit way. We can thus

describe many configuration of an ambient system using

few aspects.

The merging mechanism embedded in the AA’s weaver

ensures the functional consistency of the adapted

application. Moreover, because the symmetry property of

the weaving operation is guaranteed whatever the

approach (mono or multi-cycle), it allows to define AAs or

cascaded AAs as some independent adaptation entities.

No explicit dependencies are defined between Aspects of

Assembly. Thus, concerns can be implemented without

anticipating changes in the context of the target

application.

3. Experiments and validation

As mentioned earlier, response time of the adaptation

process is a major concern in ubiquitous computing. It

should be mastered and offer dynamics consistent with

those of the changing environment. The frequency of

adaptations that can be tolerated has to be as close as

possible to the frequency of changes in the environment.

We evaluate our approach in term of performance with

some experiments on the duration of a weaving cycle over

components assemblies randomly generated. They were

conducted on a standard personal laptop (Athlon X2, 1.6

GHz, 512Mo RAM). For this purpose various types of

components have been instantiated randomly at runtime, in

order to activate randomly two types of AAs. The number

of joinpoints varies from 0 to 120 in these experiments and

is directly related to the number of woven instance of

advice.

3.1 Mono-cycle weaving duration

In term of duration, a weaving cycle can be divided into

three major steps: (1) pointcut matching and combination,

(2) merging and (3) translation of the resulting instance of

advice into elementary instructions. During this time of

adaptation, the weaver is no longer open to other

disruptions; it doesn't consider anymore changes occurring

in the software infrastructure or on the selection and

unselection of AAs by the user. Steps (1) and (3) have a

low cost in time, indeed the joinpoint model involves only

few data and the order in which they are processed do not

matter. During a weaving cycle, the merging process is the

most expensive in time. However, several instances of

advice are not necessarily conflicting. Therefore, the cost

in time of the composition process can be described as in

Figure 13 and is directly related to the cost of the merging

operation and its probability as noted in [24].

Figure 14 shows the evolution of the duration of the

composition process without conflicts (i.e. pi=0) according

to the number of joinpoint given as input. We can see that

this process is not time consuming

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May

2011 ISSN (Online): 1694-0814

10

Fig. 13 Duration of instance of advice composition

In contrast, Figure 15 shows the duration of the

composition process when it involves the merging

mechanism. In the first curve, pi=0,33 whereas in the

second curve pi=0,5. When involving the merging engine,

the composition process is much more time consuming

and the number of conflicting rules is a key parameter.

During a weaving cycle, when the merging probability is

about 33%, the duration of the composition process

represents over 80% of the global duration of the weaving

operation. The curve presented in Figure 24 shows the

evolution of this duration.

Fig.15 Duration of the composition process with pi=0,33 and pi=0,5

In the worst case, the composition operation involves rules

that are all conflicting (where conflicts are all different).

Thus, the cost of such a case describes the upper bound of

the cost in time of the composition operation. It depends of

the number of rules to be merged. An AA can be written as

follows AAi={pointcuti,advicei} where advicei={rulei0, …

ruleij}. Thus, the number of rules to compose is the sum of

all rules of all advices:

Fig 16. Number of rules to be merged

Remind that the composition operation can be written as

follows: T(App0,An)=App1 where An={AA0,…,AAn}

where App0 is the base application. App0 is considered as a

set of rules such as add components and bindings.

Accordingly, the cost in time (cT) of the mono-cycle

composition operation, in the worst case, can be expressed

as follows:

Fig. 17 Upper bound of the cost in time of the composition operation in

the mono-cycle approach

Indeed, considering that the merging operation is

symmetric and that all rules are conflicting (and that all

conflicts are different from each other), the number of

merging operation, between two rules, to be processed is:

(2
nbRule

 – (nbRule + 1)).

The same goes for the pointcut matching process. This

process aims to identify sets of joinpoints, a set for each

pointcut rule. Then, it produces all possible combinations

from these sets. A combination is a tuple including one

joinpoint from each rule. This process is done

independently for each aspect. The cost in time of the

pointcut matching process in the mono-cycle weaving

approach is the cost of the slowest process among all the

AAs. In the worst case it depends on the number of

combinations that must be calculated (nbJPoint is the

number of joinpoints):

Fig. 18 Number of combination to be calculated in the mono-cycle

approach

3.2 Multi-cycle weaving duration

In the multi-cycle approach the time spent to manage the

chaining of cycles and the history of base assemblies is

minimal. As we can see in Figure 20, this time is directly

related to the number of cycles involved in the cascade.

This figure presents the cost of the weaving process

without composition and merging mechanisms. Thus, we

can clearly see how the cost in time spent to manage

cascades evolves according to the number of cycle.

As for the mono-cycle approach, in the worst case the

composition operation involves, for each cycle, rules that

are all conflicting with different conflicts. Therefore, the

number of rules to compose in one cycle is:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

11

Fig. 19 Number of rules to be merged in one cycle

Fig. 20 Cost of the weaving process without the composition/merging
engine

Remind that the weaving operation in the multi-cycle

approach can be written as: Appm=Tm(Am,Tm-1(Am-1,…,
T0(A0,App0))). So, the cost in time of the composition

operation (cT
m
) in the multi-cycle approach can be

expressed as follows:

Fig . 21 Upper bound of the cost in time of the composition operation in

the multi-cycle approach

Indeed, considering that the merging operation is

symmetric and that all rules are conflicting (and that all

conflicts are different from each other), each rule is

merged with all others for the same weaving cycle. So the

number of merging operations to be processed

is:

For the pointcut matching process we have seen that the

cost of the operation depends on the number of

combinations to be calculated. Using the multi-cycle

approach, this number is:

Fig. 22 Number of configurations to be calculated in the multi-cycle

approach.

3.3 Synthesis

We can see that, in order to implement a same

functionality, depending on the chosen approach the costs

of the composition operation may change. To compare

both approaches, we consider that we can decompose a set

of AAs as follows: . In the mono-

cycle approach, all the sets Am, …, A0 will be woven in a

same cycle, whereas, in the multi-cycle, each set is woven

in a different cycle. In such a case since both

equation (Fig 21 and Fig 17) can be written as:

Fig. 23 Comparing Mono and multi-cycle composition cost in time

This is also true for the pointcut matching. Its cost in the

mono-cycle approach is higher than its cost in the multi-

cycle one:

Fig. 24 Comparing Mono and multi-cycle pointcut matching cost

Thus, adaptation time, when using Aspects of Assembly or

Cascaded Aspects of Assembly, is bounded by the

adaptation time of the mono-cycle approach. When using

AAs or Cascaded AAs, adaptation time is mastered and

calculable. An important point is that decomposing an AA

in order to use the multi-cycle approach, and then

increasing the number of configurations described while

designing few adaptation rules, is not a limiting factor with

regard to the response time of the mechanism.

We can consider as standard, a set of adaptations schemas

involving the merging mechanism in 33% of cases. In such

a case the adaptation time can be modeled as in Figure 25.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

12

Fig. 25 Duration of weaving process

In the field of human computer interactions, it is

considered that the user latency at most should be about

100ms. Then, Crowley et al in [26] propose that the

latency for highly tied interactive systems must be twice

lower than user latency: 50ms. Under this bound, we are

able to compose about 30 joinpoints together in one cycle

and about 10 AAs. On the other hand, ubiquitous

computing does not necessarily require such a low

response time. In the field of domotics, accepted latency is

about 1 second.

As part of the Continuum project, our approach has been

implemented, together with industrial partners, to

represent an industrial scenario. This scenario takes place

in the context of a hydrant man job. One of his is to close

various valves in a water pipeline network, for the

purposes of maintenance operations on the network. When

undertaking the action of closing valves, our mobile

worker is equipped either with a set of mobile devices, or

with various devices in his car (GPS, Radar, Map, Camera,

compass ...). The valves can also be equipped with various

devices (humidity sensors, RFid ...). In this scenario, 18

AAs were written for 25 rules. In addition, between 7 and

10 devices are used, together with 7 off-the-shelf

components for the user interface. The number of

instances of advice generated thus ranges between 20 and

30, depending on the devices discovered. The number of

interactions between identified adaptation rules ranges

between 5 and 10, and such interactions appear in

approximately 35% of cases. The response times observed

and computed for the scenario are shorter than 50ms.

4. Related Works

Many works have identified the interest of aspects for

ubiquitous or mobile computing, because of the

encapsulation of adaptations into aspects [19,27]. For

instance, in dynamic service adaptation [27], aspects are

used to integrate services or to correct services mobile

communication; they are not used to make structural

reconfiguration of services orchestrations. Only few works

allow achieving compositional adaptation and

encapsulating adaptation into entities independent of each

other. Moreover, amongst these works, only few propose

adaptations with acceptable and mastered response time.

4.1. Logical properties

Aspects are not always independent of each other, some

interactions may occur between them. In classical

approaches, there is no support offered to resolve these

interactions, it must be done explicitly by developers. The

plugin architecture proposed in [28] is based on

AO4BPEL [29] which is an aspect oriented workflow

language. The latter allows dynamic adaptation of services

compositions. In these works, the problem of management

of interactions between aspects is not addressed

dynamically. This management is implemented using the

standard operators: after, before... Since this work is

applied to workflows, they do not consider the dynamic

evolution of the software infrastructure. In the proposed

architecture there are two types of aspects: monitoring

aspects that are able to activate or deactivate adaptation

aspects at runtime. Aspects can be added, removed or

sometimes generated at runtime. In our approach an AA

and then combinations of AAs may also be added,

removed or combined at runtime. An AA may also trigger

of another AA. But in the case of AAs this is not

necessarily defined explicitly (an AA does not describe in

one rule that another AA may be triggered) for better

reusability.

In EAOP [30], the authors propose mechanisms to define

aspects of aspects. This mechanism allows applying

aspects on others aspects including a mechanism to

manage recursive calls. This is done using a monitor that

sequentializes application of aspects. The monitor

observes events from the execution of the application and

spreads them to all aspects. The architecture is sequential,

when the base application is stopped when it generates an

event and involves the monitor. This is not the case with

AA and Cascaded AAs. Moreover, AA’s pointcuts do not

concern the execution flow of the application but the

structure of the component assembly to be applied.

 JAsCo [31] is a dynamic AOP middleware. Aspects are

encapsulated into components and connectors can deploy

them by specifying their interactions. The aspects are

woven according to a sequence of events represented as a

finite state automaton. Advices can then be associated to

the various transitions of this automaton. In this sense,

aspects weaving can be chained. Like for the plugin

architecture presented above, advices of the chain are well-

defined and aspects are stateful which is not necessarily

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

13

the case with the Cascaded AAs. On the other side, this

approach allows to weave aspects according to the history

of previously checked pointcuts.

Some works focus on the management or the detection of

interferences between aspects. For example, Aksit et al

[30] suggest a mechanism to identify interference issues

and especially those on shared joinpoints. This approach is

language independent. It consist in simulating and

representing the various states of a program in the form of

a graph and then identifying behavioral interferences

between aspects, in particular with respect of the execution

order of aspects. This type of approach for explicit

resolution of interference issues can be found in many

works [33,34,16]. In [16], many types of interferences are

considered and addressed explicitly using policies.

As we already mentioned, this type of approach is hardly

suitable within ubiquitous computing since we can not

anticipate the adaptations that will be done on an

application.

SAFRAN [2,35] is an extension of Fractal in order to

facilitate the design of adaptive applications. To do this,

they use adaptation aspects that can be added or removed

at runtime. SAFRAN’s joinpoint model is not restricted to

the execution flow of the application. Adaptations can be

triggered by some events related to the context of the

application called exogenous events. The architecture of

SAFRAN comprises two parts: (1) an adaptation language

Fscript to reconfigure a component assembly where the

ACID properties for dynamic reconfiguration are

guaranteed; and (2) a toolkit to observe the context called

WildCAT. An adaptation controller is integrated to the

membrane to link, thanks to rules, these two parts and

manage dependencies between adaptations explicitly. AA,

conversely, don’t require explicit dependencies, being

independent from each other

4.2 Temporal properties

First of all, we have seen that because the environment is

continuously evolving, the adaptation mechanism has to

offer an every time adaptation process. Some works offer

some adaptations that are not totally processed at runtime.

In [36], Cheng et al. propose a mechanism to dynamically

adapt applications that were not designed as adaptable. To

achieve this, a two-stage process is implemented. The first

is to implement, at design-time, some mechanisms that

will thereafter allow the adaptation at runtime of an

application. The second stage is to assess, at runtime,

when to adapt and then to insert or remove some code in

the application. Such two-step approach would be difficult

to use in the field of ubiquitous computing because to

implement adaptations some new unforeseen adaptations it

would be necessary to go through step 1 again.

On the other hand, in most of current middleware for

ubiquitous computing architectures, the software

infrastructure is not specifically considered and is often

subsumed in a global context [7,37,38]. For instance,

SOCAM [7] is a middleware that allows rapid prototyping

of context-aware services. SOCAM architecture offers a

set of entities to automatically manage the perception and

interpretation of the context including the software

infrastructure. This often implies that the mechanism for

context-awareness is based on an overall control loop.

Thus, response time is often ignored by projects requiring

complex context processing like ontologies, for which

execution time is unbounded [6], sometimes requiring

several seconds to process [7]. Consequently, response

times are not mastered.

Conversely, some other approaches propose to decompose

the context exploitation. In [38], Munelly et al propose to

decompose the context into categories and to adapt an

application according them using aspects. Aspects are used

on top of classical objects. Such decomposition is

interesting and allows considering several contexts

separately. However, interferences between aspects are not

managed and contextual information are in this approach

some parameters of the adaptation. Unfortunately, aspects

are triggered in a classical way and not according to

changes occurring in the context.

5. Conclusion

We presented in this paper an approach for self-adaptation

of ubiquitous applications. This approach allows reacting

quickly with mastered response times, to changes

occurring in the software infrastructure of the application

to be adapted. Moreover, the merging mechanism

implemented in the weaver ensures the independence of

adaptations entities and the consistency of the resulting

application. So, some adaptations can be designed and

woven in an unforeseen way in order to build an

application in an opportunistic way despite an

unpredictable environment. Moreover, since these

adaptations can be combined not explicitly thanks to a

multi-cycle weaving process, the high variability of the

software infrastructure can be managed with a minimum

of adaptation rules. In future work, we will investigate

whether it is possible to preprocess the whole or part of

adaptation conflicts. To achieve this, the weaver should

resolve as many conflicts as possible from abstract rules of

advices. This would optimize the performance of the

weaving process.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

14

Acknowledgments

Thanks to Daniel Cheung-Foo-Wo for his early works on

AA and evaluation of performances in his PhD Thesis.

This work is supported by the French ANR Research

Program VERSO in the project ANR-08-VERS-005 called

CONTINUUM.

References
[1] Bencomo, N., Grace, P., Flores, C., Hughesand, D., Blair, G.

Genie: Supporting the Model Driven Development of

Reflective, Component-based Adaptive Systems. In ICSE

2008 - Formal Research Demonstrations Track, (2008).

[2] David, P.C., Ledoux, T.: An aspect-oriented approach for

developing self-adaptive Fractal components. In: 5th

International Symposium on Software Composition

(SC'06). Lecture Notes in Computer Science, vol. 4089.

Springer-Verlag, Vienna, Austria (Mar 2006)

[3] Müller-Schloer, C.: Organic computing: on the feasibility of

controlled emergence. In: Proceedings of the 2nd

IEEE/ACM/IFIP international conference on Hardware/

software codesign and system synthesis. pp. 2-5. ACM

(2004)

[4] Fox, J., Clarke, S.: Exploring approaches to dynamic

adaptation. In: Proceedings of the 3rd International

DiscCoTec Workshop on Middleware-Application

Interaction. pp. 19-24. ACM (2009)

[5] Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli, J.Y.,

Riveill, M.: Models at Runtime: Service for Device

Composition and Adaptation. In: MRT'09. p. 10 (Oct 2009)

 [6] Bouzeghoub, A., Taconet, C., Jarraya, A., Do, N., Conan, D.:

Complementarity of Process-oriented and Ontology-based

Context Managers to Identify Situations. Submitted to

CMMSE'2010 (2010)

[7] Gu, T., Pung, H., Zhang, D.: Peer-to-peer context reasoning

in pervasive computing environments. In: Pervasive

Computing and Communications, 2008. PerCom 2008. Sixth

Annual IEEE International Conference on. pp. 406-411.

IEEE (2008)

[8] Issarny, V., Caporuscio, M., Georgantas, N.: A perspective

on the future of middleware-based software engineering. In:

Future of Software Engineering, 2007. FOSE'07. pp. 244-

258. IEEE (2007)

[9] Hourdin, V., Tigli, J.Y., Lavirotte, S., Rey, G., Riveill, M.:

SLCA, composite services for ubiquitous computing. In:

Proceedings of the 5th International Conference on Mobile

Technology, Applications and Systems(Mobility). p. 8

(Sep 2008)

[10] Chappell, D.: Introducing SCA. A White Paper by David

Chappell (2007)

[11] Cervantes, H., Hall, R.S.: Autonomous adaptation to

dynamic availability using a service-oriented component

model. In: Proceedings of the 26th International Conference

on Software Engineering. pp. 614-623. ICSE '04, IEEE

Computer Society, Washington, DC, USA (2004)

[12] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-

Foo-Wo, E. Callegari, and M. Riveill, “WComp Middleware

for Ubiquitous Computing: Aspects and Composite Event-

based Web Services,” Annals of Telecommunications

(AoT), Vol. 64, Apr 2009, pp. 197–214.

[13] Geihs, K., Reichle, R., Wagner, M., and Khan, M. U.

Modeling of context-aware self-adaptive applications in

ubiquitous and service-oriented environments. In Software

Engineering for Self-Adaptive Systems, Springer-Verlag,

Berlin,Heidelberg, pp. 146-163. (2009)

[14] Athanasopoulos, D., Zarras, A., Issarny, V., Pitoura, E., and

Vassiliadis, P. CoWSAMI: Interface-aware context gathering

in ambient intelligence environments. Pervasive and Mobile

Computing 4, 3, pp. 360-389. (2008)

[15] McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: A

taxonomy of compositional adaptation (2004)

[16] Greenwood, P., Blair, L.: A framework for policy driven

auto-adaptive systems using dynamic framed aspects.

Transactions on Aspect-Oriented Software Development
II pp. 30-65 (2006)

[17] Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of

variability realization techniques. In: Software : Practice

and experience 35(8), pp. 705-754 (2005)

[18] Lopes, C., Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Lopes, C., Loingtier, J., Irwin, J.: Aspect-oriented

programming. In: In Proceedings European Conference on

Object-Oriented Programming (1997)

[19] Zambrano, A., Gordillo, S., Jaureguiberry, I.: Aspect-based

adaptation for ubiquitous software. Mobile and Ubiquitous

Information Access pp. 136-140 (2004)

[20] Antoine Marot and Roel Wuyts. Detecting unanticipated

aspect interferences at runtime with compositional intentions.

In Proceedings of the Workshop on AOP and Meta-Data for

Software Evolution (RAM-SE '09), NY, USA, 5 pages.

(2009)

[21] Apel, S., Leich, T., Saake, G.: Aspectual mixin layers:

aspects and features in concert. In: Proc. of the 28th Int.

Conf. on Software engineering, ACM (2006)

[22] Sanen, F.; Truyen, E. & Joosen, W.: Modeling context-

dependent aspect interference using default logics. In Fifth

workshop on reflection, AOP and meta-data for software

evolution, pp. 1-5 , (2008)

[23] Lopez-Herrejon, R.; Batory, D. & Lengauer, C. A

disciplined approach to aspect composition. In: Proceedings

of the 2006 ACM SIGPLAN symposium on Partial

evaluation and semantics-based program manipulation,

pp 68-77, (2006)

[24] D. Cheung-Foo-Wo. Dynamic adaptation by aspects

weaving. PhD thesis, University of Nice Sophia Antipolis,

(2009).

[25] L. Berger. Implementation of interactions in distributed,

compiled and strongly typed environment : the MICADO

model. Phd thesis, University of Nice-Sophia Antipolis, (oct

2001).

[26] Crowley, J., Coutaz, J., Bérard, F.: Perceptual user

interfaces: things that see. Communications of the ACM

43(3) (2000)

[27] Hirschfeld, R., Kawamura, K.: Dynamic service adaptation.

Software: Practice and Experience 36(11-12), pp. 1115-

113,1 (2006)

[28] A. Charfi, T. Dinkelaker, M. Mezini, S. Darmstadt, and G.

Darmstadt. A plug-in architecture for self-adaptive web

service compositions. In IEEE International Conference on

Web Services, 2009. ICWS 2009, pp. 35–42, (2009).

[29] Charfi, A., Mezini, M.: Aspect-Oriented Web Service

Composition with AO4BPEL. Web Services: European

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011

ISSN (Online): 1694-0814

15

Conference, ECOWS 2004, Erfurt, Germany, pp. 27-30:

Proceedings (2004)

[30] R. Douence and M. Südholt. A model and a tool for event-

based aspect-oriented programming (EAOP). Techn. Ber.,

Ecole des Mines de Nantes. TR, 2(11), (2002).

[31] W. Vanderperren, D. Suvee, M. Cibran, and B. De Fraine.

Stateful aspects in JAsCo. In Software Composition, pp.

167–181. Springer, (2005).

[32] Aksit, M., Rensink, A., Staijen, T.: A graph-Transformation-

based simulation approach for analysing aspect interference

on shared join points. In: Proceedings of the 8th ACM

international conference on Aspect-oriented software

development. pp. 39-50. ACM (2009)

[33] Whittle, J., Jayaraman, P.: Mata: A tool for aspect-oriented

modeling based on graph transformation. Models in

Software Engineering pp. 16-27 (2008)

[34] Tanter, E.: Aspects of composition in the Reflex AOP

kernel. In: Software Composition. pp. 98-113. Springer

(2006)

[35] David, P., Ledoux, T., Léger, M., Coupaye, T.: FPath and

FScript: Language support for navigation and reliable

reconfiguration of Fractal architectures. Annals of

Telecommunications 64(1), pp. 45-63 (2009)

[36] Yang, Z., Cheng, B., Stirewalt, R., Sowell, J., Sadjadi, S.,

McKinley, P.: An aspect oriented approach to dynamic

adaptation. In: Proceedings of the first workshop on Self-

healing systems. pp. 85-92. ACM (2002)

[37] Manuel Roman, Christopher K. Hess, Renato Cerqueira,

Anand Ranganathan, Roy H. Campbell, and Klara Nahrstedt.

Gaia : A middleware infrastructure to enable active spaces. In

IEEE Pervasive Computing, pp. 74–83, (Dec 2002).

[38] M. Strimpakou, I. Roussaki, C. Pils, M. Angermann, P.

Robertson, and M. Anagnostou. Context modelling and

management in ambient-aware pervasive environments. In

International Workshop on Location-and Context-

Awareness (LoCA 2005), Munich, Germany. Springer,

(2005).

 [39] Munnelly, J., Fritsch, S., Clarke, S.: An aspect-oriented

approach to the modularization of context. In: Pervasive

Computing and Communications, 2007. pp. 114-124. IEEE

(2007)

Nicolas Ferry is preparing his PhD thesis on Context-aware and
reactive adaptation of applications for pervasive computing at the
University of Nice – Sophia Antipolis, supervised by Stéphane
Lavirotte and Michel Riveill. His thesis is co-financed in a
partnership between the CSTB (scientific and technical center for
constructions) under the administrative supervision of the French
Ministry of housing and the Provence Alpes Côte d’Azur Regional
council.

Jean-Yves Tigli got his PhD degree in computer science from the
University of Nice Sophia Antipolis, in 1996, on software
engineering for intelligent robotics systems. He participated in
various European projects between 1998 and 2002 (in ESPRIT
and MAST European research programs). He’s Associate
Professor in Computer Science at the Engineering School of
Technology of the University of Nice – Sophia Antipolis, France.
He’s currently managing and leading a project called “Continuum”
supported by the French national research agency (ANR) to
address the challenge of service continuity in dynamic pervasive
environments involving various French universities and
international companies.

Stéphane Lavirotte got his PhD degree in computer science from
the University of Nice – Sophia Antipolis and INRIA, in 2000, on
software for document Analysis and Recognition. He participated
in various European projects between 1997 and 2004 (in ESPRIT,
IST European research programs). He is Associate Professor in
Computer Science at the IUFM of the University of Nice – Sophia
Antipolis, France.

Gaëtan Rey got his PhD degree in computer science from the
University of Joseph Fourrier at Grenoble, in 2005, on context-
aware computing. During 2005-2006, he spent one year in the
System Research Group of the University College of Dublin,UK.
He’s Associate Professor in Computer Science in the Institute of
Technology of the University of Nice – Sophia Antipolis, France.

Michel Riveill got his PhD degree in computer science from the
National Polytechnic Institute of Grenoble, in 1987, on distributed
software. He obtained “Habilitation à Diriger les Recherches” in
1993, from the same institute. He’s full Professor in Computer
Science at the Engineering School of Technology of the University
of Nice – Sophia Antipolis, France. He’s leading the software
engineering department of the computer science laboratory of the
University of Nice - Sophia Antipolis and CNRS.

