
IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx
ISSN 1694-0784

1

Manuscript received July 31, 2009.

Manuscript revised August 19, 2009.

Lightweight Service Oriented Architecture for
Pervasive Computing

Jean-Yves TIGLI1,*, Stéphane LAVIROTTE1, Gaëtan REY1, Vincent HOURDIN1,2 and Michel RIVEILL1

1 I3S, University of Nice – Sophia Antipolis
Sophia-Antipolis, France

{tigli,lavirott,rey,riveill}@polytech.unice.fr

2 MobileGov
Sophia-Antipolis, France

vincent.hourdin@mobilegov.com

Abstract

Pervasive computing appears like a new computing era based on
networks of objects and devices evolving in a real world,
radically different from distributed computing, based on
networks of computers and data storages. Contrary to most
context-aware approaches, we work on the assumption that
pervasive software must be able to deal with a dynamic software
environment before processing contextual data. After
demonstrating that SOA (Service oriented Architecture) and its
numerous principles are well adapted for pervasive computing,
we present our extended SOA model for pervasive computing,
called Service Lightweight Component Architecture (SLCA).
SLCA presents various additional principles to meet completely
pervasive software constraints: software infrastructure based on
services for devices, local orchestrations based on lightweight
component architecture and finally encapsulation of those
orchestrations into composite services to address distributed
composition of services. We present a sample application of the
overall approach as well as some relevant measures about SLCA
performances.1
Key words: Software Composition, Pervasive Computing,
Service oriented Architecture, Service for Device

1. Introduction

Pervasive computing is omnipresent computers [1] in the
real environment through a large number of objects and
new devices in our everyday life (everyware [2]). Indeed,
with the miniaturization of computer hardware, processing
units become invisible and integrate into buildings, clothes,
vehicles, and so on. They can be at the same time mobile,
integrated and often coupled to the physical environment
[3]. They increase application fields of computing by a
growing quantity and diversity of smart devices in the
physical environment of users [4]. For all these reasons,

1 This work is currently supported by ANR project ANR-08-VERS-005
* Currently delegated as INRIA researcher in the team PULSAR

pervasive and ubiquitous computing appears like a new
computing era [5] based on networks of objects and
devices evolving in a real world, radically different from
distributed computing, based on networks of computers
and data storages.
In this paper we focus on the pervasive software challenges.
A classical way to address such topic is to consider
dependencies between the real world and the software
application in the so-called context-aware approaches. Lots
of papers propose various approaches to take into account
contextual information into the applications using various
architectures ([6], [7], [8], [9]). We argue that is only a
first step (or rather the last!) to take into account the
dynamic evolution of the surrounding physical
environment. The first real challenge is to find all the ways
to interact with and recover such contextual information
from the physical environment. This is classically the role
of input/output devices in our computers. But this classical
approach based on layered software provides standard
runtime and libraries. It is based on predefined set of
devices without being able to integrate numerous devices
or objects on the fly, without a priori knowing them. In
other words, Pervasive computing must deal with a
dynamic software environment (called software
infrastructure afterward), before processing contextual data.
The challenge we address in this paper is to propose a
middleware for pervasive computing being able to deal
with numerous objects and devices: being able to adapt to
their intrinsic heterogeneity according to the used
technologies, their behaviors and functionalities, being
able to react to their appearance and disappearance at
runtime.
We first study how existing middlewares for pervasive
computing are taking into account these specific constrains,
and we confirm that service oriented paradigm can be an
efficient approach to meet some pervasive computing
challenges. We then introduce some specific extensions
before proposing the SLCA (Service Lightweight

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx

2

Component Architecture) model, as an original service
oriented approach for pervasive computing. Then we
present experimentations based on SLCA and we analyze
some measurements and results. Finally we conclude on
the limitations of such an approach and we introduce future
works.

2. When SOA Meets Pervasive Computing

Among the numerous software paradigms, Service
Oriented Architectures (SOA) [10] originally brought eight
principles and influences to software engineering: service
encapsulation, allowing any software to be run as a part of
an architecture entity; loose coupling, minimizing the
dependencies between services, and increasing dynamicity
and reusability; service contract, forcing services to adhere
to a communication agreement, providing descriptions of
what they provide or require; abstraction, also referred as
black-box abstraction, limiting knowledge of the service
logic to the contract; service autonomy, making services
independent from any other, and self-sufficient for the
service they offer; service discoverability, allowing
services to be dynamically discovered at run-time, with
some criteria; finally composability, coordinating services
and assembling them into composite services. Then
considering objects and devices of software infrastructure
as services, SOA is well-suited to deal with the
heterogeneity and the dynamic evolution of pervasive
systems as we defined in the previous section. Thus using
SOA to create applications based on physical or virtual
devices proved its worth for almost ten years, with Jini
(1999) [11] and UPnP (1999) [12], then more recently
DPWS (2004) [13]. Like services, devices are autonomous,
independent, and provide a set of functionalities, which
can be contractualized. We then talk about service as the
basic entity of the environment, which can be a software
service, or a service representing a device.
In such evolution, three new principles and features
appeared to fit pervasive application constrains. Firstly,
one of major evolutions is probably the full discoverability.
In fact services are classically discoverable using
repositories and service brokers. Discoverability can be
interpreted as several ways to discover or use services of
the environment. For example, it can mean that services
are discovered at run-time, but only from a list of already
known services like in Gaia [14]. Enterprise-oriented SOA
models like CORBA [15] and OSGi [16] use centralized
services registries in which service producers have to
register themselves in order to be used by service
consumers, like the UDDI registry for Web services. What
we are interested in for discoverability is the fully dynamic,
reactive, and decentralized discovery of services, as
introduced by services for devices like Jini [6], SLP, or
Web Services for Devices (WS4D) like UPnP (SSDP) or

DPWS (WS-Discovery). In the case of pervasive
applications, each entity must be able to discover locally
all the services for devices in its context and to detect their
appearance and disappearance dynamically [17]. This is a
hot research topic in SOA for pervasive computing [18],
[19], [20].
Secondly, a new kind of interaction between services and
then devices is required to allow spontaneous messages to
be sent from the real world, from objects and devices, to
software applications. The new event communication
feature suggested by Event-Driven Architectures (EDA), in
which is a part of Advanced SOA, adds such required
reactivity to pervasive applications. Most pervasive
computing middlewares (Amigo [21], Aura [22], Gaia [14],
Oxygen [23]) use standard remote method invocation
(RMI) or remote procedure calls (RPC) technologies to
interact with devices. With the outcome of EDA in
Advanced SOA and with WS4D, eventing communications
have been integrated to SOA to decrease coupling between
entities and to increase reactivity of applications and
systems. The CORTEX middleware for pervasive
computing bases itself on a publish/subscribe event
management for message passing between all its sensors
and actuators.
At last, the interoperability requires making interactions
between services and devices independent of the
communication technologies used. The most popular
approach in this field is Web service technology, adding
Web standards based protocols which is the case in WS4D,
for example, in Amigo. In Aura however, a specific XML
description format is used, and connectors to services are
created depending on the communication protocol used
(CORBA, COM, or RPC), thus maintaining an
interoperability layer without the use of Web services.

Table 1: Main characteristics of major works in pervasive computing

At this stage, the main remaining challenge is the way to
dynamically compose such services into an overall
efficient and valid application. Despite advantages of
service composition in ambient computing, for example
easing discovery of relevant services in the current context
or providing a set of services fitting users needs [24], only
a few middlewares handle composability.
Indeed, among the above cited projects, only Amigo
supports dynamic and context-sensitive service

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx

3

composition, bringing new pertinent services to the
environment. We can however cite the Daidalos project
[24], a middleware for composition of pervasive mobile
services, which handles decentralized dynamic discovery
and service composition, but which does not handle
evented communications. The Table 1 summarizes how the
main principles are handled by the different projects we
have seen. When discoverability is checked, it means that
the project supports full discoverability. Reactivity denotes
the use of evented communications. Interoperability means
that non-language-dependent representation is used for
service description, and that entities from multiple
programming languages and operating systems can interact
in the same middleware. Finally, composability refers to
the ability to export new entities of the same type in the
infrastructure, using other discovered entities.
In conclusion, from what we have studied, there is no
middleware tackling all the principles of pervasive
computing based on event-based service architectures.
In the next section we introduce our original approach
called SLCA to dynamically compose numerous services
for devices and objects. First we explain how we can
consider everything as a service. Then we propose a first
way to locally orchestrate various services using a
lightweight component based approach. Finally we present
how we can reuse such local orchestration as new services
in an overall distributed composition of services for real
pervasive applications.

3. Our SLCA Model

SLCA (Service Lightweight Component Architecture) is a
model of architecture for event-based service composition
based on an assembly of lightweight components. The
SLCA model relies on a software and hardware execution
environment evolving dynamically. We define this
environment as a set of resources, which are software or
hardware entities provided to the application and thatcan
appear and disappear at runtime.
Following the reasons mentioned in previous chapters, we
propose an architecture taking into account three main
paradigms:
– Web service oriented architecture. Ambient computing
applications are then a graph of Web services and
composite Web services. Interoperability, distribution, and
discoverability are then assured.

– Lightweight assembly of component. Composite Web
services are created from a dynamic assembly of black box
components, executing in a local container, which doesn’t
provides mandatory technical services (non-functional
concerns). Dynamicity of applications is thus provided,
and reusability is increased.
– Events. They take place in the model at the service level,
with Web services for devices for example, as well as in
lightweight assemblies of components. Their advantages
are twofold: they promote reactivity of systems, and
increase decoupling between entities, and thus dynamicity
of applications.
SLCA thus defines a compositional architecture model
based on events, to design composite Web services, and
increment the cooperation graph of services and
applications. The environment consists of mobile users
interacting with the world or users with worn or mobile
devices. We see them as services momentarily available in
the infrastructure. Composite services use services of the
infrastructure as required interface to create new
applications or to add new functionalities and export them
on their new provided interface.
In the next subsections, we will explain more deeply what
constitutes the SLCA model, and illustrate all of the three
points, that are the service infrastructure, the service
orchestration, and the service composition.

3.1 Pervasive Software Infrastructure of Services

SLCA is based on a service infrastructure using events,
and dynamically discoverable in a decentralized way. They
represent devices used in ambient computing applications,
as well as composite services created by SLCA.
Interoperability is maximal, thanks to the use of Web
services, which can be used or implemented with any
programming language and on all hardware architectures.
The architecture is completely dynamic. Services appear
and quit the network reflecting the presence of devices,
without knowing beforehand any service registry. It is
possible to take into account these changes in applications
without knowing what devices shall be met at design-time.
Indeed, from the XML description of Web services, it is
possible to automatically generate proxy components
which will enable communications with services of the
software infrastructure.
The service infrastructure of SLCA architecture is thus
used for the discovery and the communication with

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx
ISSN 1694-0784

4

Manuscript received July 31, 2009.

Manuscript revised August 19, 2009.

Fig. 1 LCA meta-model: lightweight components

services distributed in the environment. Applications are
designed by dynamic service orchestration (mashups).
An example of such a service infrastructure would be the
set of services that a room can contain. All devices that are
present inside this room are able to provide a service
interface, either natively or by bridging native protocol to a
service layer: lights, shutters, air-conditioning, TV,
sensors, video projector… A user entering this room is
then able to discover all these devices, and communicate
with them in an homogeneous way, using advanced Web
services.
This is the service infrastructure of SLCA. We will now
focus on how service orchestration is made, to create
actual applications. For that matter, we use lightweight
service composition in our model.

3.2 Lightweight Services Composition

SLCA composition approach is based on lightweight
components [25] similar to JavaBeans and OpenCom [26],
but to design Web services orchestration. A composite
service encapsulates the SLCA container which contains a
dynamic lightweight component assembly. The LCA
(Lightweight Component Architecture) component model
is a model derived from Beans [27], adapted to other
programming languages, with concepts of input, output
ports and properties.
Like in most lightweight component based approaches
[26], these components are called ‘light’ for several
reasons. The first is that they execute in the same memory
addressing space, and in the same process. Their
interactions are thus reduced to the simplest and the more
efficient way: the function call. The second reason, which
stems from the first, is that they don’t embed non-

functional code for middleware or other non-mandatory
technical service in this local environment. Their memory
footprint is then reduced and they are instantiable and
destructible quickly. To finish, they don’t contain any
reference between them at design-time, and respect black
boxes and late-binding concepts. The dynamicity of the
model is thus maximal, since they use events to
communicate between them; components are fully
decoupled, and highly reactive.
The only non-functional code present in the components is
event management and properties accessing. Higher level
programming languages define these operations;
component code is then a simple object, like JavaBeans or
.NET components, not overloaded with code injection for
any purpose. The container does not provide technical
services easing the programmer work, but consequently
allows the creation of components with various
requirements, like components needing to access hardware
and thus low level functions. Adding non-functional
properties, like security, journaling, or persistence of
messages can be made by adding components in the
assembly, guaranteeing scalability of the model.
As described in the LCA model (Fig. 1), components have
an interface, defined by the component’s type. This
interface is a set of input ports (methods), and output ports
(events), each one being typed by its parameters, and
having an unique identifier. Interactions between
components are bindings or links.
They link an output port of a component to one or more
input port of components. Ports being explicit, no code has
to be generated, nor studied by introspection to know what
to modify in components to change the target of a binding
at run-time. When an event is emitted, the control flow is
passed to recipients in an undefined order, but this can be

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx

5

fixed adding sequence components. When limiting to
unique bindings, and using sequence components, control
flow managing of the application is fully deterministic. Not
having indirections, due to technical services of the
framework, gives a full control on control flows, and eases
their debugging.
Component types which can be instantiated in a container
depend on the list describing and implementing them in a
repository. This list is also modifiable at run-time. When a
service is discovered, its corresponding proxy component
can be immediately loaded and instantiated in the
component assembly to contribute to functionalities of the
composite service.
Component assemblies inside composite services can
create applications or new functionalities from services of
the environment. Unlike the service infrastructure, they are
executed locally, and their logic is not disturbed by
appearing or vanishing of services.
When a service used by a composite service becomes
unavailable, there are two possible reactions: either the
state of the assembly is unmodified until a replacing
compatible service is found, or its proxy component can be
removed and the composite service can be adapted. In the
first case, the locality of the assembly of component makes
it able to save its state. Of course, adaptation mechanisms
should be applied to take into account new requests to the
composite service, which may or may not be able to
completely satisfy a request. Continuing our room
example, we climb here at the level of application creation.
Indeed, we already have a service infrastructure, and we
are now creating service orchestrations with lightweight
component composition. These compositions will create
dynamic applications, based on available services of the
environment. For example, a user entering a room will be
able to use all devices of the room to create his new
application. If some devices are appearing in the room,
because they are moved in by another user, or simply
turned on, they shall be added to the current service based
application.

3.3 Distributed Composition of Services

SLCA defines an architecture of composite event-based
Web services, which are constructed by assembling
components (Fig. 2).
A composite service then contains an assembly of
components, in a container. Proxy components to other
Web services are instantiated in the container of a
composite service, and create applications from services.

Fig. 2 Composite event-based Web service.

present in the environment. Moreover, applications created
through such orchestrations are exported as services to the
service infrastructure (Fig. 3).
A composite service (container) provides two service
interfaces (Fig. 2). The first one, the dynamic functional
interface, allows publishing and accessing functionalities
provided by the composite Web service; the second one,
the control interface, allows dynamic modifications of the
internal component assembly which provides these new
functionalities.

Fig. 3 Graph of event-based Web services.

The dynamic functional interface exports events and
methods of the internal component assembly using probe
components. Adding or removing a probe component

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx
ISSN 1694-0784

6

Manuscript received July 31, 2009.

Manuscript revised August 19, 2009.

Fig. 4 SLCA Meta-model: interfaces of composite services.

dynamically modifies the functional interface and its
description in the corresponding composite service.
Adaptation to environment variations can be made by
modifying the interface of a composite service, without
stopping its execution.
Two types of probe components exist (Fig. 4): sinks, which
add a method to the composite service interface, and
which, in the internal component assembly, has only an
output port. The invocation of the method from the service
interface thus emits an event in the component assembly.
The second type of probe is the source, which adds an
event to the composite service interface, and has only an
input port. The invocation of the method from the
component interface thus emits a Web service event.
The control interface addresses dynamic modifications of
the internal component assembly. It provides methods for
adding or removing component instances, types, or
bindings, and also to get information about the assembly.
Therefore, another client, which can be a composite
service using a proxy component for this service interface,
can act on the structure of an other composite service. The
structural adaptation of composite services and
applications is thus possible in the model, by its own
entities.
Colors of the UML diagram of Fig. 4 match those of Fig. 2
to make the reading easier. Proxy components allow
services of the environment to be used in the composite
service, while probe components allow new services to be
added to the environment, which can eventually be used by
other composite services. The concept of distributed
hierarchy is then introduced, through the service layer.

In the first example, we were able to discover and access
devices and services of a room in a homogeneous way. The
service orchestration with lightweight components then
enabled the creation of dynamic applications in the room.
This third step, service composition, allows created
applications to be reused as a part of new applications.
Composite services representing a room export their
functionalities and are reused by composite services of a
floor, or of a building.

4. Experimentation and Validation

4.1. Implementation of SLCA Model

The SLCA model has been projected into an
implementation called SharpWComp 2.0, which was
deposed as copyrighted software in France, used and
developed in three programs of the French National
Research Agency (ANR). The first explored self-
adaptation of software applications to assist people with
disabilities. It is creating interaction devices, so they are
adapted to profiles of reduced mobility people, and self-
adapting to variations of the profile in time. The second
project adds contracts inside composite services, like
binding the execution time of a service, or catching
execution points of an application to add some actions.
The aim of the last one is to be able to provide continuous
services to a user, with mechanisms of self adaptation of
composite services.

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx
ISSN 1694-0784

7

Manuscript received July 31, 2009.

Manuscript revised August 19, 2009.

Fig. 5 Component creation and destruction time measures.

Dynamicity of composition. The important point about
SLCA composite services is that they are fully dynamic.
We are able to create composite services, by visual
composition of components or textual commands at
runtime, which enables a fast application prototyping [28].
But what is valuable now, is that if a service becomes
unavailable whilst being in use, we can modify the
composite service’s internal logic without recompiling the
assembly or restarting it.
Web Services Implementation. The control interface of
the composite service allows us to use several tools to
modify dynamically its internal assembly of components,
allowing to load, instantiate, destroy components and links.
To implement this control interface (and also for the
functional interface), we choose the UPnP protocol.
Another current good choice could be DPWS as a
replacement of the UPnP protocol. These protocols
provide a Web Service approach for physical or software
objects with the dynamicity, distributivity, autonomy,
interoperability preoccupation. Thus, the composite service
becomes then completely automatically dynamic and
adapting to simple cases environment changes.

4.2. Measures and Validation

Service composition in pervasive computing needs to be
reactive to take into account changes of the infrastructure
quickly and adapt to users’ needs. We measured time of
creation and destruction of components in a composite
service implemented with the previously mentioned
SharpWComp 2.0 (Fig. 5).

The creation time of basic components, as well as proxy
components, is constant, around 3ms. Therefore, to create
n components, 3 × n ms are needed. The removal of such
components couldn’t have been measured, because we are
in a managed memory environment. This is equivalent to
dereference the instance of the component, and remove it
from the container’s list, which was too fast to be
measured. Link creation and destruction time are also too
simple operations and could not be measured. These
measures correspond to the Lightweight Component
Architecture (LCA) described in 3.2. For probe
components, which in SharpWComp 2.0 rely on Intel’s C#
UPnP stack, the creation and destruction time are more
important. This is due to the fact that when changing the
service interface of a composite service, service
advertisements are sent to inform that the previous
interface is no longer valid, and then they are reissued with
the new interface. In UPnP, an advertisement has to be
made for each existing service, so if we consider that a
probe component creates a service, every new probe will
correspond to sending one more message each time. This is
why adding the fortieth probe will take nearly one second:
announcing thirty-nine service destruction, and announcing
forty new services. Of course, this can be optimized. A
service can be published only when all its adaptation is
complete, reducing component instantiation time.
The time of generation of proxy component is a important
factor in our model. We measured it for a standard light
device, containing ten methods divided into two services
and two evented variables: the average value is 140.6ms.
Thus, the time elapsed from the appearance of a service on
the infrastructure to the adaptation of a composite service

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx

8

can be calculated. It will be a sum of the proxy component
generation time (140.6ms), the component instantiation
time (3ms), the adaptation of the composite service time,
depending on how many new components are created,
especially probe components and their number in the
former assembly. Communications on the service layer,
which will trigger all these many operations, must be taken
into account and can be costly, depending on the average
round-trip between hosts. Finally, the whole idea is that the
complete adaptation process time has to be low enough to
permit application adaptation to occur when needed,
without making the application unusable. Consequently,
the rate of infrastructure events must not be too close from
the adaptation speed of composite service, which would
lead them to spend their time adapting and not executing.

5. Conclusion

We have demonstrated that SOA (Service oriented
Architecture) and its numerous principles are well adapted
for pervasive computing. We have detailed and illustrated,
in our model called SLCA, various additional principles to
meet completely pervasive software constraints like
software infrastructure based on services for devices, local
orchestrations based on lightweight component
architecture and finally encapsulation of such
orchestrations into composite services to address
distributed composition of services. With regards to
performances measures, we can easily distinguish the
negligible delays due to lightweight components handling
in comparison with the delays due to the network stack
(with UPnP in our measures, about 2%). This result
reinforce the interest of lightweight composition of
services for pervasive computing, where the complete
adaptation process time has to be low enough to permit
application adaptation to occur when needed, without
making the application unusable. Our future works focus
on crosscutting modularity, to facilitate incremental
evolution of applications, and implementing replicable
modification schemes on a large number of services. The
Aspect paradigm well known in the object oriented
programming field [29], is now widely applied to other
architectural paradigms (AO4BPEL for orchestrations
[30], FAC for components [31], and so on). Our SLCA
model takes the same direction, evolving toward an
approach using the concept of Aspect of Assembly (AA).
It allows crosscutting evolutions and adaptations of the
distributed composition of services for devices.

Acknowledgments

This work is supported by the French ANR Research
Program VERSO in the project ANR-08-VERS-005 called
CONTINUUM.

References
[1] K. Lyytinen and Y. Yoo. “Issues and challenges in ubiquitous

computing”. Communications of the ACM, Vol. 45, No. 12,
2002, pp. 62–65.

[2] A. Greenfield. “Everyware: the dawning age of ubiquitous
computing”. New Riders, p. 12, 2006.

[3] 7th edition of the ITU Internet Report (International
Telecommunication Union). The internet of things. 2005.

[4] Wireless World Research Forum. Book of visions.
http://www.wireless-world-research.org/.

[5] M. Weiser. “The computer for the twenty-first century”.
Scientific American, Vol. 265 No. 3, 1991, pp. 94–104.

[6] J. Coutaz and G. Rey. “Foundations for a theory of
contextors”. In Computer-Aided Design of User Interfaces
III, 2002, pp. 13–34.

[7] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli.
“Context-aware middleware for resource management in the
wireless Internet”. IEEE Transactions on Software
Engineering, Vol. 29, No. 12, 2003, pp. 1086–1099.

[8] A. Bottaro, J. Bourcier, C. Escoffier, and P. Lalanda.
“Context-Aware Service Composition in a Home Control
Gateway”, IEEE International Conference on Pervasive
Services, 2007, pp. 223–231.

[9] T. Gu, H. Pung, and D. Zhang. “A service-oriented
middleware for building context-aware services”. Journal of
Network and Computer Applications, Vol. 28, No. 1, 2005,
pp. 1–18.

[10] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and R.
Metz. “Reference model for service oriented architecture 1.0”.
Technical Report wd-soa-rm-cd1, OASIS, 2006.

[11] K. Arnold, editor. The JINI Specifications, Second Edition.
Addison-Wesley Professional, 2000.

[12] Universal Plug’n Play specification. http://www.upnp.org/,
1999.

[13] Devices Profile for Web Services specification.
http://specs.xmlsoap.org/ws/2006/02/devprof/, 2006.

[14] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. “Gaia: A middleware
infrastructure to enable active spaces”. In IEEE Pervasive
Computing, Vol. 1, No. 4, 2002, pp. 74–83.

[15] Object Management Group. CORBA 3.0 spec, 2004.
[16] OSGi Alliance. http://www.osgi.org/, 2002.
[17] N. Bussière, D. Cheung-Foo-Wo, V. Hourdin, S. Lavirotte,

M. Riveill, and J.-Y. Tigli. “Optimized contextual discovery
of web services for devices”. In IEEE International
Workshop on Context Modeling and Management for
Smart Environments, 2007.

[18] V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R.
Chibout, N. Levy, and A. Talamona. “Developing ambient
intelligence systems: A solution based on web services”.
Journal of Automated Software Engineering, 2004.

[19] J. Kuck and M. Gnasa. “Context-sensitive service discovery
meets information retrieval”. In 5th IEEE International
Conference on Pervasive Computing and Communications
Workshops (PERCOMW), 2007, pp. 601–605. IEEE
Computer Society.

[20] J. Schlimmer. Web services dynamic discovery (WS-
Discovery).

IJCSI International Journal of Computer Science Issues, Vol. 4, No. x, xxxx

9

http://specs.xmlsoap.org/ws/2005/04/discovery/wsdiscovery.
pdf, April 2005.

[21] M. Vallée, F. Ramparany, and L.ercouter. “Flexible
composition of smart device services”. In the International
Conference on Pervasive Systems and Computing(PSC-
05), 2005.

[22] J. P. Sousa and D. Garlan. “Aura: an architectural
framework for user mobility in ubiquitous computing
environments”. 3rd Working IEEE/IFIP Conference on
Software Architecture, 2002.

[23] MIT Oxygen project. http://oxygen.lcs.mit.edu/.
[24] A. Davy, F. Mahon, K. Doolin, B. Jennings, and M. Foghl´u.

“Secure Mobile Services Infrastructures for Mgovernment:
Personalized, Context-Aware Composition of Pervasive
Mobile Services”. Euro Mobile Government (Euro mGov)
Conference, I. Kushchu, Ed. Brighton, UK: ICMG, 2005,
pages 110–121.

[25] Broy, M. and Deimel, A. and Henn, J. and Koskimies, K.
and Plasil, F. and Pomberger, G. and Pree, W. and Stal, M.
and Szyperski, C. “What characterizes a (software)
component?”. Software-Concepts & Tools, Springer, Vol.
19, 1998, pp. 49-56.

[26] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas.
“An efficient component model for the construction of
adaptive middleware”. In the Proceedings IFIP Middleware
2001, 2001, pp. 160–178. Springer-Verlag.

[27] Englander, R. Developing Java Beans. O'Reilly \&
Associates, CA, USA, 1997.

[28] D. Cheung-Foo-Wo, J.-Y. Tigli, S. Lavirotte, and M. Riveill.
“Wcomp: a multi-design approach for prototyping
applications using heterogeneous resources”. In 17th IEEE
International Workshop on Rapid System Prototyping, pp.
119–125, Crete, 2006.

[29] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. “Aspect oriented
programming”. In the European Conference on Object-
Oriented Programming, Vol. 1241, 1997, pp. 220–242.
Springer-Verlag.

[30] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini.
“Reliable, Secure, and Transacted Web Service
Compositions with AO4BPEL”. In Proceedings of the 4th
IEEE European Conference on Web Services (ECOWS),
2006.

[31] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye.
“A model for developing component-based and aspect-
oriented systems”. In Springer, editor, 5th International
Symposium on Software Composition, Vol. 4089 of LNCS,
2006, pages 259–274.

Jean-Yves Tigli got his PhD degree in computer science from the
University of Nice Sophia Antipolis, in 1996, on software
engineering for intelligent robotics systems. He participated in
various European projects between 1998 and 2002 (in ESPRIT
and MAST European research programs). He’s Associate
Professor in Computer Science at the Engineering School of
Technology of the University of Nice – Sophia Antipolis, France.
He’s currently managing and leading a project called “Continuum”
supported by the French national research agency (ANR) to
address the challenge of service continuity in dynamic pervasive

environments involving various French universities and
international companies.

Stéphane Lavirotte got his PhD degree in computer science from
the University of Nice – Sophia Antipolis and INRIA, in 2000, on
software for document Analysis and Recognition. He participated
in various European projects between 1997 and 2004 (in ESPRIT,
IST European research programs).
He is Associate Professor in Computer Science at the IUFM of the
University of Nice – Sophia Antipolis, France.

Gaëtan Rey got his PhD degree in computer science from the
University of Joseph Fourrier at Grenoble, in 2005, on context-
aware computing. During 2005-2006, he spent one year in the
System Research Group of the University College of Dublin,UK.
He’s Associate Professor in Computer Science in the Institute of
Technology of the University of Nice – Sophia Antipolis, France.

Vincent Hourdin is preparing his PhD thesis on context-based
security in SOA for pervasive computing at the University of Nice
– Sophia Antipolis, supervised by J.-Y. Tigli and Michel Riveill.
He’s also software research engineer for MobileGov, an IT
security software editor in Sophia Antipolis, France.

Michel Riveill got his PhD degree in computer science from the
National Polytechnic Institute of Grenoble, in 1987, on distributed
software. He obtained “Habilitation à Diriger les Recherches” in
1993, from the same institute. He’s full Professor in Computer
Science at the Engineering School of Technology of the University
of Nice – Sophia Antipolis, France. He’s leading the computer
science department of the engineering school and the software
engineering department of the computer science laboratory of the
University of Nice - Sophia Antipolis and CNRS.

