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Abstract—To unleash the great potential of the Internet of
Things (IoT), it is critical to facilitate the creation and operation
of IoT systems across IoT, edge and cloud infrastructures with
vast heterogeneity, scalability and dynamicity. What is the
current landscape of the existing approaches and tools that
attempt to cope with this complexity? The work presented in
this paper contributes to this picture. This paper presents the
results of our systematic literature review (SLR) on research
approaches and tools for the deployment and orchestration of
IoT systems (DEPO4IOT). From thousands of relevant publica-
tions, we systematically identified and reviewed seventeen (17)
primary studies for data extraction and synthesis to answer
our predefined research questions. The results of our SLR
show the technical details of the primary DEPO4IOT studies. A
main finding is that most approaches do not properly support
software deployment and orchestration at the tiny IoT device
level. Moreover, there is a lack in terms of properly addressing
the trustworthiness aspects in approaches for IoT systems
deployment and orchestration. In this paper, we suggest some
potential research directions to address the gaps found.
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I. INTRODUCTION

By 2020, Gartner envisions around 20 billion Internet-of-
Things (IoT) endpoints will be in use1, representing great
business opportunities. However, to unleash the full potential
of the IoT, it is critical to facilitate the creation and operation
of IoT Systems [1]. IoT systems are typically complex, large
scale, and distributed. Coordinated behavior across IoT, edge
and cloud infrastructures need to be managed [2]. Besides,
the trustworthiness of such systems is critical2, ranging from
business critical to safety critical. The ability to continuously
evolve and adapt these systems is decisive to ensure and
increase their trustworthiness, quality and user experience.

Recently, different approaches and tools have emerged to
support the orchestration and deployment of IoT systems,
hereafter referred to as deployment and orchestration of
IoT systems (DEPO4IOT) approaches. Software deployment
typically refers to a post-development activity performed
once a piece of software has been developed. In this
study, approaches are considered as supporting deployment
when they explicitly offer mechanisms enabling the soft-
ware deployment process, which typically consists of the

1http://www.gartner.com/newsroom/id/3598917
2https://www.enisa.europa.eu/publications/

baseline-security-recommendations-for-iot

following stages: (i) release, (ii) installation, (iii) activation,
(iv) update, (v) adaptation, and (vi) un-deployment [3]. An
orchestration is also often represented as a graph describing
relationships between software elements or processes. Con-
trary to deployment configurations, these relationships may
represent an order of operations required to realize a behav-
ior. Using this definition, any service composition approach
that targets IoT domain is considered as an orchestration
approach for IoT. However, there is no clear picture of what
are the current primary DEPO4IOT approaches, and how
advanced they are in supporting the continuous evolution
of IoT systems and keep them trustworthy. For example,
we would wonder if there exists any advanced approach to
safely control evolving actuator behaviours and secure any
sensitive data at any point in time.

We aim to clarify the DEPO4IOT research landscape
by identifying the most significant DEPO4IOT approaches,
performing analyses on them and discussing their technical
details. Based on the analyses, we discuss the existing
technical challenges and suggest directions for addressing
these challenges. To achieve this goal, we conducted a
systematic literature review (SLR) following the guidelines
in [4]. From thousands of relevant publications, we system-
atically identified and reviewed 17 primary studies for data
extraction and synthesis to answer our research questions.
The main contributions of this work are our answers to the
following research questions. RQ1: What are the technical
details of the primary DEPO4IOT approaches? RQ2: How
do the existing primary DEPO4IOT approaches address
the trustworthiness aspects? RQ3: What are the current
technical challenges to be further investigated?

In the main content, Section II presents our SLR approach.
Section III describes our classification schemes for the
primary studies applied to facilitate the data extraction and
comparison. We give the results of our SLR in Section IV
and discuss related work in Section V. Finally, Section VI
concludes the paper with the major findings.

II. OUR SYSTEMATIC REVIEW APPROACH

We conducted the SLR by following the guidelines in [4].
Based on the context and motivation presented in Section
I, we give the research questions (RQs) in Section II-A.
To explicitly specify the scope of our SLR and reduce

https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot


possible bias in our selection process, Section II-B clarifies
the inclusion and exclusion criteria for selecting primary
studies. Section II-C shows our strategy to find and select
the primary studies for answering the research questions.

A. Research questions

To answer the general research questions given in Section
I, we refine them into the following sub-questions. RQ1’s
sub-questions: RQ1.1 - What are the publication status
of DEPO4IOT research? RQ1.2 - How do the primary
DEPO4IOT approaches support IoT deployment and orches-
tration? RQ1.3 - What are the design support aspects of the
primary DEPO4IOT approaches?

Moreover, we examine how the trustworthiness aspects,
which are important in the development and operation of IoT
systems, are supported by the primary DEPO4IOT studies.
RQ2’s sub-questions: RQ2.1 - How do the existing primary
DEPO4IOT approaches address the trustworthiness aspects?
RQ2.2 - Have any primary DEPO4IOT approaches provided
advanced supports such as monitoring, adaptation, and
shared access to resources? RQ2.3 - How mature are the
approaches in terms of tool support and evaluation?

Finally, we want to discuss the open issues that would de-
serve more research attention and some potential directions
to tackle these issues (RQ3).

B. Inclusion and exclusion criteria

Based on the research questions and the scope of our study
presented in Section I, we clearly predefined the inclusion
and exclusion criteria to reduce bias in our process of search
and selection of primary studies. The primary studies must
meet ALL the following inclusion criteria (IC):
- (IC1) A primary study must contain a deployment (with
or without orchestration) approach for IoT systems.
- (IC2) A primary study must be explicitly in IoT area, either
in general or in a specific application domain of IoT.
- (IC3) A primary study must have software engineering
(SE) approaches as deployment is typically SE activity.

We excluded non-peer-reviewed or unpublished paper,
white paper, technical report, thesis, patent, presentation,
book chapter, and paper not written in English.

C. Search strategy and selection process

In Section II-C1, we present our database search process.
To complement for the database search process, we have
also conducted a manual search process presented in Section
II-C2. Fig. 1 shows an overview of the search and selection
process with the results for each step, which we describe in
the rest of the section.

1) Database search: We used four popular publication
databases IEEE Xplore3, ACM DL4, Science Direct5, and

3http://ieeexplore.ieee.org
4https://dl.acm.org
5https://www.sciencedirect.com

Figure 1. Overview of the search and selection steps

Scopus6 to search for primary studies. We did not use
Google Scholar and SpringerLink. Scopus and ACM DL
already index SpringerLink7. Google Scholar returns all
kinds of papers, in which peer-reviewed articles should
have been covered by our four chosen databases. Worse,
Google Scholar also returns many non-peer-reviewed and
non-English papers, which should have been excluded at the
first place in our search process. The four chosen databases
contain peer-reviewed articles, and provide advanced search
functions, especially search in meta-data such as title,
abstract, keywords that we used. Based on the research
questions, we identified the search keywords. Basically, we
used the following search query: (“Internet of Things” OR
IoT OR “Web of things” OR WoT) AND (orchestration OR
deployment OR choreography OR topology OR composition
OR dataflow) AND (Tool OR Middleware OR Service OR
Framework). The search string was applied according to the
search functions provided by the four databases.

For each candidate paper, we first read the paper’s title,
keywords and abstract. If the title, keywords and abstract
are insufficient for us to decide to exclude it, we further
skimmed and scanned the paper’s full content. Note that we
rather kept any candidate paper in doubt at one point for
further checks later. In the end, we hold discussions among
reviewers to crosscheck the candidate papers in doubt and
agreed on final decisions to include or exclude them. In the
first round (depicted as group discussion 1 in Fig. 1), we
discussed a list of studies focusing on either deployment OR
orchestration. However, we found that most of the discussed
studies only focus on orchestration that do not have any
research contributions in deployment for IoT. In the second
round of group discussion (depicted as group discussion 2 in
Fig. 1), from the first list, we shortlisted 14 primary studies
that have research contributions in deployment for IoT (using
IC1), which are in the scope of this study.

2) Manual search: We conducted a manual search pro-
cess by first initiating a set of the DEPO4IOT studies that
we have known of such as [S7-S9, S11, S14, S17] in Table

6https://www.scopus.com
7https://www.springer.com/gp/computer-science/lncs/

information-on-abstracting-and-indexing/799288
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I. This was the test set to fine-tune the search query in the
automatic search. Moreover, we checked the latest work of
the authors of these primary DEPO4IOT studies and their
related work to find more DEPO4IOT studies (using Google
scholar). We found three new primary studies that have not
been found in the automatic search process (because the
common keywords were not in their titles and abstracts). In
total, we obtained the final set of 17 primary studies for data
extraction and synthesis to answer the research questions.

III. A TAXONOMY FOR CLASSIFICATION

To classify, analyze, and compare the primary studies,
we have developed a taxonomy of DEPO4IOT (Fig. 2).
Our taxonomy consists of the key aspects of deployment
and orchestration for IoT that we know of, e.g., from
analyzing the initial set of primary studies, and extracting
relevant concepts from [5]. We present them in the following
categories: deployment and orchestration support (Section
III-A), design support (III-B), and advanced support (III-C).

A. Deployment and orchestration support

Here are the key deployment and orchestration aspects.
1) Deployment support:

Deployment type: Deployment typically comes in two
flavors: imperative and declarative ([S17], Table I). The im-
perative approach requires a “deployment plan” that details
how to reach the desired deployment, usually using a work-
flow language. In contrast, the declarative approach only
requires a specification of the desired deployment which a
“deployment engine” then computes how to reach.

Target infrastructure: IoT systems are typically run-
ning over heterogeneous infrastructures ranging from tiny
devices (the device layer) over gateways (the edge/fog layer)
to cloud resources (the cloud layer).

Network: Connected software components, deployed
over the whole IoT, edge and cloud space, must properly
interact with each other, e.g., by custom addressing, seg-
mentation of launched Virtual Machines (VMs), or software-
defined networking, virtual network. Besides, we consider if
an approach supports for specific communication protocols
among IoT devices, such as Wifi, Bluetooth.

Cloud Provisioning: It is not only important to dis-
tinguish tools that actually support cloud resources provi-
sioning from others but also to identify which virtualization
layer (e.g., IaaS) their provisioning engine supports.

Bootstrap: A bootstrap is a basic executable program
on a device, or a runtime environment, which the system in
charge of the deployment relies on (e.g., Docker).

2) Orchestration support:
Communication support: we classify five differ-

ent kinds of communication support in orchestration [6]:
MessagePassing, SharedSpaces, MessageQueue, Publish-
Subscribe, and RemoteInvocations (e.g., Java RMI, Mi-
crosoft DCOM, CORBA).

Integration support: The interactions between the
software components that compose an orchestration or a
deployment can be specified and managed at different levels
of abstractions: logical ports (e.g., port 22 should be open
for SSH) or methods (e.g., remote methods invocation).

3) Tool scope: If tool support is provided and the level
of automation (auto, semi-auto, manual).

B. Design support

1) Specification language:
Representation and Language type: A language may

have one or more textual and graphical syntaxes, and can
be general-purpose (GPL) or domain-specific (DSL).

Programming Model: The selection of a programming
model typically depends on the pragmatic of a tool. For
instance, reactive and event-driven programming is often
used to design IoT systems, flow-based programming is
well suited for orchestrating data flows between IoT devices
and services, whilst component oriented programming is
typically used to specify deployment models.

2) Specification Capabilities:
Application and Deployment Structures: Modelling

a deployment typically overlaps with the specification of
the system’s structure. Indeed, to actually allow for the
deployment of a system on a selected target infrastructure,
its application components (hereafter called entities) need to
be allocated to IoT, edge or cloud resources.

C. Advanced supports

To address trustworthiness aspects, the DEPO4IOT ap-
proaches often require advanced supports such as adaptation,
monitoring, and shared access to resources.

1) Trustworthiness: refers to the preservation of security,
privacy, safety, reliability, and resilience of systems [7].

2) Adaptation: There are two main approaches for dy-
namic adaptations [8]: (i) parametric adaptation and (ii) com-
positional adaptation. Parametric adaptation allows modify-
ing the system’s behavior by tuning parameter values. This
type of adaptation requires the adaptation parameters to be
defined at design-time. In contrast, compositional adaptation
allows the “hot” deployment and binding of software com-
ponents that were not necessary foreseen before the initial
deployment of the system. It is worth noting that both types
of adaptation can be seamlessly combined. Orchestration and
deployment tools can support these two types of adaptation
for modifying: (i) the application itself (e.g., replacing one
software component by another) and (ii) its infrastructure
(e.g., bursting from one cloud to another).

3) Monitoring: Monitoring is a key activity to reason
on the state of a system and for controlling and managing
hardware as well as software infrastructures [9]. Monitoring
probes are used to deliver information and indicators charac-
terizing the system and the context in which it is running. In
this study, we identify the following purposes of monitoring:



Figure 2. A Taxonomy of Deployment and Orchestration for IoT

(i) measuring QoS of the system, (ii) capturing the status
and health of a deployment, (iii) depicting the state of the
environment, and (iv) observing the execution flow of the
system, for instance for debugging purpose.

4) Shared access to resources: Because IoT systems may
involve actuators, it is important to control the impact these
actuators can have on the physical world and to manage
conflicting actuation requests. More generally, this applies
to the management of shared accesses to resources, which
can be of two types: (i) direct concurrent access to resources
(e.g., several entities accessing to the same service/actuator)
or (ii) indirect shared access to a resource (e.g., actuators
from different applications are modifying the temperature
with possibly conflicting goals) [10].

IV. RESULTS

Table I shows an overview of the 17 primary DEPO4IOT
studies. We have conducted in-depth analyses on these
studies based on the taxonomy in Section III. These analyses
give the answers to our research questions as follows.

A. RQ1 - On techniques and approaches

Answering RQ1.1, Fig. 3 shows a sharp rise in the number
of primary DEPO4IOT studies very recently. More than
half of the studies (nine out of 17) were just published
in 2017, which could indicate this research area is taking
off to match with the important role of deployment and
orchestration for IoT. One reason that DEPO4IOT challenges
are only receiving more attention recently is that so far
IoT research might have focused more on fundamental IoT
technologies, e.g., approaches and tools for the development
of IoT software components, communication protocols. But,
once the IoT development approaches have advanced, the
challenges of deployment and orchestration of IoT have
popped up, which require more systematic approaches in
deployment and orchestration.

Table I
THE PRIMARY DEPO4IOT STUDIES*

# Year Study Title (clickable to open the corresponding publication) PV

S1 2017 FogTorch QoS-Aware Deployment of IoT Applications Through the Fog J
S2 2017 ARCADIA A Middleware for Mobile Edge Computing J
S3 2017 Chen et al. A Dynamic Module Deployment Framework for M2M Platforms C
S10 2017 SoPIoT A Novel Service-Oriented Platform for the Internet of Things C
S11 2017 Calvin Calvin Constrained: A Framework for IoT Applications in Heteroge-

neous Environments
C

S14 2017 Niflheim Niflheim: An end-to-end middleware for applications on a multi-tier
IoT infrastructure

C

S15 2017 Verba et al. Platform-as-a-service gateway for the Fog of Things J
S16 2017 Foggy Foggy- A Framework for Continuous Automated IoT Application

Deployment in Fog Computing
C

S17 2017 TOSCA-
BMWi

A TOSCA-based Programming Model for Interacting Components of
Automatically Deployed Cloud and IoT Applications

C

S12 2016 Cloud4IoT Cloud4IoT: A Heterogeneous, Distributed and Autonomic Cloud Plat-
form for the IoT

C

S7 2015 D-NR Developing IoT Applications in the Fog: a Distributed Dataflow Ap-
proach

C

S9 2015 WComp A Generic Service Oriented Software Platform to Design Ambient
Intelligent Systemss

C

S13 2015 xWoT A component based approach for the Web of Things W
S5 2014 BeC3 BeC3: Behaviour Crowd Centric Composition for IoT applications J
S8 2014 glue.things glue.things - a Mashup Platform for wiring the Internet of Things with

the Internet of Services
W

S6 2013 SAaaS Application deployment for IoT: An infrastructure approach C
S4 2011 D-LITE D-LITE: Distributed logic for internet of things services C

PV: Publication venue; J: Journal; C: Conference; W: Workshop; *Sorted by publication year

On another note, IoT is a heterogeneous research area that
spans in multiple relevant research domains such as Software
Engineering (SE), Cloud or Service-Oriented Architecture
(SOA), Network, and IoT itself. Fig. 4 shows the times each
research domain is the main topic in the calls for papers of
the publication venues where the primary DEPO4IOT studies
are published. It is not surprising to see the dominance of IoT
topic in the publication venues of the primary DEPO4IOT
studies (nine in total in Fig. 4). But, the other related research
domains are sharing publication venues with IoT (SE: four,
Clould/SOA: four, Network: four). Note that some venues
do not really have a specific dominant research domain, thus
classified as multiple-domain publication venues. Even not
absolute, these numbers do reflect the heterogeneous nature
of IoT research, especially regarding DEPO4IOT.

Answering RQ1.2, Because of our selection criteria, most
of the primary studies have their primary contributions in
deployment for IoT. Even though a few primary studies

https://ieeexplore.ieee.org/abstract/document/7919155/
https://ieeexplore.ieee.org/abstract/document/8066002/
https://ieeexplore.ieee.org/abstract/document/8315377/
https://dl.acm.org/citation.cfm?id=3131549
https://ieeexplore.ieee.org/abstract/document/7980047/
https://ieeexplore.ieee.org/abstract/document/7980047/
https://ieeexplore.ieee.org/abstract/document/8171356/
https://ieeexplore.ieee.org/abstract/document/8171356/
https://www.sciencedirect.com/science/article/pii/S1474034616301872
https://www.computer.org/csdl/proceedings/aims/2017/1999/00/1999a038-abs.html
https://www.computer.org/csdl/proceedings/aims/2017/1999/00/1999a038-abs.html
https://pdfs.semanticscholar.org/99f1/3c61e2335395e790b6653f3788e362ae6c57.pdf
https://pdfs.semanticscholar.org/99f1/3c61e2335395e790b6653f3788e362ae6c57.pdf
https://ieeexplore.ieee.org/abstract/document/7830723/
https://ieeexplore.ieee.org/abstract/document/7830723/
https://ieeexplore.ieee.org/abstract/document/7356560/
https://ieeexplore.ieee.org/abstract/document/7356560/
https://dl.acm.org/citation.cfm?id=2800843
https://dl.acm.org/citation.cfm?id=2800843
https://dl.acm.org/citation.cfm?id=2834792
https://link.springer.com/article/10.1007/s11036-013-0481-8
https://dl.acm.org/citation.cfm?id=2684436
https://dl.acm.org/citation.cfm?id=2684436
https://ieeexplore.ieee.org/abstract/document/6831498/
https://ieeexplore.ieee.org/abstract/document/6142320/


Figure 3. Publication of the pri-
mary studies per year

Figure 4. Research topics per
publication venue

(six out of 17) such as ARCADIA [S2], SoPIoT [S10],
or WComp [S9], have orchestration as their primary focus,
deployment is still present in these approaches, e.g., in forms
of mechanisms for the dynamic loading (deployment) of
WComp or OSGi components.

We would expect modern IoT systems leveraging cloud
computing should have used cloud provisioning techniques
in the DEPO4IOT approaches. However, only five ap-
proaches mention cloud provisioning ([S1, S2, S10, S14,
S15, S17]). This observation illustrates that so far there is a
lack of approaches/tools specifically designed for supporting
the vertical depth of different IoT layers, i.e., from cloud to
fog/edge and to IoT devices.

After analyzing the data about deployment engine, we
observe that more than two-third (71%, Fig. 5) of the
primary studies have declarative deployment type vs. less
than one-fourth (23%) have imperative type. We would
argue this is because imperative approaches are typically
more complicated to specify and reuse (as they require the
specification of a deployment plan). On the other hand, they
give full control over the deployment process, thus allowing
its optimization. By contrast, declarative approaches better
supports evolving and reusing deployment models, however
the deployment engine may not compute the optimal de-
ployment process. One primary study [S17] has leveraged
both declarative and imperative deployment types. This is
because the authors of TOSCA-BMWi [S17] have focused
on understanding and providing both declarative and imper-
ative deployment types to TOSCA [11].

Fig. 6 shows how the DEPO4IOT studies focus on the
different layers of infrastructure: cloud, edge, or IoT de-
vices. Most studies (65% in total) have the deployment and
orchestration focus on cloud (6%) or edge/fog (35%) or
both (24%). Few studies (29% + 6%) mention orchestrating
and deploying software on IoT devices. We would argue
that deployment and orchestration on IoT devices are the
most challenging research problems in DEPO4IOT because
of the diversity of IoT devices, their network protocols,
and their different computing resource constraints [1]. To

Figure 5. Deployment
engine

Figure 6. Target infrastructure

really support for modern IoT systems in which trustworthy
aspects are crucial, DEPO4IOT studies must advance to the
technical details of edges and IoT devices. Only in this
way, IoT engineering can control the whole chain of IoT
software deployed from cloud until IoT devices. Besides
the heterogeneity, a huge challenge to bring IoT software
engineering down to the low level of IoT devices could
be the involvement of “black-box” software components or
devices in IoT systems. Even worse, among the few studies
that support DEPO4IOT at IoT devices level, we find the
technical details at IoT devices level very limited. SAaaS
[S6], BeC3 [S5] and D-LITE [S4] mention about managing
and supporting deployment at IoT devices but no technical
details are given. Niflheim [S14] also focuses more on the
technical details of cloud and edge levels. Only Calvin
Constrained (called Calvin for short)8 [S11] and SoPIoT
[S10] provide some technical details at IoT devices level
such as the service abstraction of devices in SoPIoT or
hardware-specific features supported by Calvin.

Most of the studies provide information about the boot-
straps that the deployment approaches rely on. Besides
common (open source) runtime environments such as OSGi,
Docker, Node-RED, Node.js, Python, there are solution-
specific runtime environments that have been developed
together with the DEPO4IOT approaches such as Calvin run-
time [S11], WComp container [S9], or D-LITE [S4]. In other
words, we find two trends of using bootstraps in DEPO4IOT.
One trend uses main-stream execution environments, e.g.,
Docker, Node.js, SSH and OS, which make them somehow
easier to adopt (in the sense that it is easier to find a target
with these main-stream execution environments). Another
trend relies on more specific execution environments, e.g.,
Node-RED (D-NR [S7]), Calvin [S11], which can offer
extra services compared to generic solutions. It is worth to
note that this is typically the case of middleware, where
the middleware itself must be running or installed on the
target host. In this case, the mechanisms such as dynamic
component loading or class loading are typically used, e.g.,
Node-red, WComp [S9], OSGi.

Network specification among IoT elements is an important
part of deployment and orchestration. Most of the primary

8https://github.com/EricssonResearch/calvin-base/wiki/Tools

https://github.com/EricssonResearch/calvin-base/wiki/Tools


approaches use straightforward network addressing. Only
one approach provides an advanced support of software
defined networking [S15]. Less than half of the approaches
provide some information about the supported communica-
tion protocols of the IoT devices such as wifi, bluetooth,
ZigBee, Xbee. These approaches do not really have explicit
network specification and device communication protocols
support but rather just briefly mention them. This obser-
vation is understandable because very few primary studies
really support at IoT device level.

We can see that the communication types in orchestrating
IoT components are diverse and have a fair share in use,
excepts Shared space (SS), which is rarely used. Overall,
the approaches offering the best decoupling in time and
space [6] (between subscribers and publisher), i.e., message
passing, message queues and publish/subscribe, are largely
adopted. Two studies TOSCA-BMWi and Cloud4IoT, which
tick all the boxes for five communication types, are indepen-
dent from communication used.

The integration level at methods for orchestration is more
common than at logical port level. Only three studies Nifl-
heim [S14], Verba et al. [S15], and TOSCA-BMWi [S17]
support both levels, which often needed for orchestrating
more complex IoT systems. Indeed, orchestration is typically
concerned with the behavior of the system, which often
has the integration at the method level based on the under-
standing of the semantics behind the methods. Vice versa, a
deployment approach may not need to care about the actual
behavior of the system being deployed but just assumes
the behavior is correct. Here, the objective of deployment
is to enable the communication between the elements of
the system, which can be done at logical port level, not
necessary at method level.

Answering RQ1.3: The language support is important to
make DEPO4IOT approaches more practical. Using domain-
specific languages (DSL) is much more popular than using
general purpose languages (GPL). Two studies FogTorch and
Foggy use GPL such as Java to implement their deployment
algorithms together with the IoT systems (FogTorch) or
some components of the deployment framework (Foggy).
Among the studies that use DSLs, there are some DSLs
that are common such as the graphical DSL for flow-
based programming in the approaches based on Node-RED
(e.g., D-NR [S7], glue.things [S8]). We can also see that
textual form and graphical form are equally popular in lan-
guage support. There are some approaches that do propose
both graphical and textual formats [S4, S5, S7, S9, S11,
S12, S17]. Component-based model and service-oriented
model are the most common programming models in the
DEPO4IOT approaches, followed by flow-based. Indeed,
DEPO4IOT needs to provide a modular, loosely-coupled
specification of the orchestration and its deployment so that
the modules can be seamlessly substituted and reused.

In most of the primary DEPO4IOT studies, there is

often an overlap between deployment and orchestration
specifications. Even though, when the focus is deployment,
orchestration specification stays at a higher level of ab-
straction (e.g., microservice vs. node in ARCADIA [S2])
and the opposite for the approaches focusing on orches-
tration, deployment specification stays at a higher level of
abstraction. Checking the deployment structure, we find that
most approaches do provide some details about the software
artifacts used ranging from node implementation (abstract)
to jar file or docker image (detail). It is worth noting that
the deployment mechanisms of DEPO4IOT approaches are
not all technology agnostic as for some it is tight to the
underlying platform (i.e., for some it is only possible to
deploy instances of nodes or components implemented using
the DEPO4IOT approaches – e.g., using D-NR [S7] the
deployable software artifact has to be an implementation of
Node-RED node). Plain support for network specification
(simply addressing) is common. Verba et al. [S15] is the
only approach that provides software defined networking to
support the configuring of multiple networking connections
that not only allow message passing but management and
application deployment as well.

B. RQ2 - On the support for trustworthiness

Answering RQ2.1: Very few primary DEPO4IOT stud-
ies address trustworthiness aspects: security (three studies),
privacy (two), resilience (four), reliability (four), safety
(zero). Worse, the trustworthiness aspects are only briefly
mentioned in these few studies, neither with details nor
in explicitly systematic manner. For example, regarding
security, we do not find any primary studies that have
put their approaches into the context of a Security De-
velopment Lifecycle9. Among three studies that mention
security, Calvin [S11] needs other runtimes to provide
security infrastructure. But, Calvin does have application
access control in form of token data to decide whether the
action of an actor (e.g., sensor or actuator) is allowed to
run or not. Moreover, Calvin runtime uses Distributed Hash
Table based registry by default for metadata about runtimes,
actors, ports, etc. Security is more visible in glue.things
[S8], which uses OAuth as open standard for authorization.
Based on OAuth, glue.things provides fine grained policy
and visibility management to define API tokens for con-
trolling API access. With API tokens, glue.things supports
individual views, access policies and privacy enforcement. It
is not clear how privacy enforcement is done in glue.things
though. D-NR [S7] briefly considers Authentication in the
deployment, i.e., an Authentication node must be deployed
in the local network. The Authentication node authenticates
the SensorTag based on its MAC address so that, e.g., only
a specific SensorTag can control the lights.

9Microsoft’s SDL, https://www.microsoft.com/en-us/sdl
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Reliability and resilience each is mentioned in four stud-
ies. Only FogTorch [S1] explicitly addresses both reliability
and resilience. The other studies SoPIoT [S10], Niflheim
[S14], D-NR [S7], WComp [S9], and Verba et al. [S15]
only slightly mention reliability and/or resilience. None
addresses safety, which should be crucial for critical IoT
systems. In the IoT context, safety is often linked with
actuation conflicts, which can occur, e.g., when concurrent
applications have a shared access to the actuators.

Answering RQ2.2: Shared access to resources is a rare
feature because only two studies [S9, S14] have mentioned
it. Even so, these two approaches have not gone further
to provide real technical solutions. This is a hard problem
that requires more extensive research work. The uncertain,
dynamic, and partially known nature of the physical en-
vironment makes it very difficult to assess at runtime the
conformity of the effects of actions in this environment with
deterministic models.

All the studies ARCADIA [S2], Foggy [S16], and
WComp [S9] that mention monitoring support also provide
adaptation support. ARCADIA [S2], Foggy [S16] have pro-
vided technical details of their monitoring approaches, such
as the Resource Monitor module of Foggy can monitor the
resource usage and dynamically adapt container placement,
whilst ACADIA [S2] monitors the application to trigger
lifecycle management actions (such as relocation, scaling,
and termination). WComp [S9] simply monitors the appear-
ance and disappearance of smart things in the environment,
and then allows to automatically and dynamically compose
multiple applications sharing common services according
to the context evolution. Among the approaches that have
adaptation support without monitoring, the purposes of
adaptation vary. For example, Calvin can update the actor
placements and auto-scale to handle a varying workload or to
replicate actors onto the available runtimes. TOSCA-BMWi
[S17] leverages the OSGi framework Equinox, which allows
to add and start new plugins, even during the runtime of
the service bus. Some other approaches provide adaptation
support for dynamic orchestration such as FogTorch [S1],
SoPIoT [S10], Cloud4IoT [S12], BeC3 [S5] and D-LITE
[S4]. SAaaS [S6] does not touch trustworthiness aspects and
advanced supports at all.

Answering RQ2.3: Eight studies ([S2, S3, S4, S5, S8,
S11, S12, S17]) have provided tool support for full au-
tomation in deployment and orchestration process. Other
eight ([S1, S6, S7, S9, S10, S13, S14, S16]) have semi-auto
level in tool support, e.g., the bootstraps cannot be installed
automatically. Only one study ([S15]) has manual level in
tool support, which means the tool has not been implemented
but only the tool framework proposed.

Finally, looking at the affiliations of the authors, we
find that a majority of the authors working on DEPO4IOT
are academics (14 primary studies). Three papers have the
authors from both academia and industry. Regarding the

types of case studies used for evaluating the DEPO4IOT
approaches, we also find the similar dominance of academic
approaches. We classify the case studies that are not from in-
dustry as academic ones, e.g., motivational examples, proto-
types or simulations developed by researchers for discussing
or evaluating their DEPO4IOT approaches. Only WComp
[S9] was driven by industrial case study. All the other
primary studies are evaluated using academic case studies.
Thus, the collaboration between industry and academia in
this research is still very limited.

C. RQ3 - On the research challenges

Our answers to RQ3 are based on the findings presented
in the answers to RQ1 and RQ2. Even though there is a
big jump in the number of primary DEPO4IOT studies in
the year 2017 compared to the previous years, our analyses
show that DEPO4IOT research is still in its infancy. There
are fundamental technical gaps and open issues to be tackled.

The trend of compute moving from cloud towards the
edge and “things” is obvious but regarding DEPO4IOT,
cloud provisioning is rare and does not cover the vertical
depth of different IoT layers, i.e., from cloud to fog/edge,
to IoT devices. It is worth to note that most of the pri-
mary DEPO4IOT approaches do not support deployment
and orchestration at IoT devices. For example, network
communication and IoT device communication protocols are
not considered, or only briefly mentioned in a few primary
studies. Not covering the vertical depth of all IoT layers is
a problem because in practice, supporting deployment and
orchestration at (resource-constrained) IoT devices/gateways
is very challenging [12]. Only by going into low-level
details, IoT engineering can really control the whole chain
of IoT software deployed from cloud until IoT devices. In
this way, it will be more likely that the trustworthy aspects
and advanced supports can be addressed more systematically
and efficiently. The current status shows that the existing ap-
proaches are immature in addressing trustworthy aspects and
advanced supports. Based on these observations, we would
propose to do DEPO4IOT research focusing on the real,
low level technical details of deployment and orchestration,
especially deployment. New DEPO4IOT research needs to
address more thoroughly and systematically the trustworthy
aspects and advanced supports for modern IoT systems.

The dominance of academia-only in DEPO4IOT research
shows that there is a big gap to make the proposed
DEPO4IOT approaches more practical and closer to the
needs in industry. There should be more collaboration be-
tween academia and industry in DEPO4IOT research.

V. RELATED WORK

Our work so far is the only systematic review of the
deployment and orchestration approaches for IoT. From the
software architecture view, an IoT middleware provides a
layer between application software and system software.



DEPO4IOT approaches are more vertical along the IoT
engineering life-cycle from development to operation of IoT
systems. Thus, DEPO4IOT approaches are not necessary
about middleware. Research on IoT middleware highly
overlaps with DEPO4IOT because DEPO4IOT approaches
often leverage middlewares for integrating heterogeneous
computing and communications devices, and supporting
interoperability within the diverse applications and services
running on these devices. The authors of [13] and [14] con-
ducted two different (not systematic) surveys of the existing
middlewares to classify them and find out the main chal-
lenges. In [14], the authors analyzed some main approaches
of IoT middleware categorized into three key architectures,
i.e., consumer-centric cloud-based, light-weight actor-based,
and heavy-weight service-based. The results of these studies
not only address the functional aspects of IoT middleware
but also quality aspects such as security, adaptation that we
also considered in our work. [15] provides a gap analysis
on the well-known IoT platforms. In particular, it identifies
gaps related security (fine grained access control), cross-
platform and cross-layer DSL to reduce threats on privacy
and security. This study is not a systematic one and focuses
on platforms maturity and usability. [16] is a systematic
study on the key IoT architectural concerns. It highlights
a set of challenges that is a combination of technical,
human, financial and ethical aspects. The topic scope of [16]
is complementary to our SLR. Even though not focusing
on deployment, orchestration and trustworthiness, it shares
some of the findings with our SLR, e.g., the lack of support
for security, or the need for runtime adaptation.

VI. CONCLUSIONS

Deployment and orchestration approaches for IoT should
be advanced enough to support distributed processing and
coordinated behavior across IoT, edge and cloud infras-
tructures and cope with vast heterogeneity, dynamicity and
required scalability. In this paper, we have examined the
existing deployment and orchestration approaches for IoT,
by conducting a systematic review. After systematically
identifying and reviewing 17 primary studies out of thou-
sands relevant papers in this field, we have found out that
1) there is a sharp rise in the number of primary studies
published in 2017; 2) however, there are still different
challenges that seem to remain to be properly addressed such
as proper support for the deployment and orchestration on
the IoT devices and sensors level; 3) future IoT deployment
and orchestration research should also focus on addressing
the trustworthiness challenges and advancing its support for
modern IoT systems. Moreover, there appears to be a lack
of approaches and tools that are efficient and practical. More
applied research as well as more research collaborations
between academia and industry can be a way to improve
on this aspect.
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