
Context-sensitive authorization in interaction patterns

Vincent Hourdin
MobileGov and I3S

930 Route des Colles - BP 145
06901 Sophia-Antipolis France
ferry@polytech.unice.fr

Jean-Yves Tigli
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

tigli@polytech.unice.fr
Stéphane Lavirotte

I3S (UNS - CNRS)
930 Route des Colles - BP 145
06903 Sophia-Antipolis France
stephane.lavirotte@unice.fr

Gaëtan Rey
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

rey@polytech.unice.fr

Michel Riveill
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

riveill@unice.fr

ABSTRACT
Main requirement of recent computing environments, like mobile
and then ubiquitous computing, is to adapt applications to context.
On the other hand, access control generally trust users once they
have authenticated, despite the fact that they may reach unautho-
rized situations. We analyse how dynamic information can be used
to improve security in the authorization process, and what are the
implications when applied to interaction patterns. We experiment
and validate our approach using context as an authorization factor
for eventing in Web service for device (like UPnP or DPWS).

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access Con-
trol,Information flow controls; E.4 [Coding and Information The-
ory]: Formal Models of Communication

General Terms
Security, Design

Keywords
Context-awareness, access control, dynamic authorization, context-
sensitive authorization

1. INTRODUCTION
Ubiquitous computing, under the leadership of Mark Weiser’s vi-
sion [15], has made computing evolve toward multi-device, multi-
user, and highly dynamic environments. Miniaturization of hard-
ware and new wireless communication networks have created new
devices, worn by users or surrounding them. Due to mobility, de-
vices appear and disappear frequently in such environments.

The major concern in ubiquitous or pervasive computing is adapt-
ing applications to users surroundings, and more generally, to their

context. In this paper, we focus on limiting communications be-
tween entities that are in the same context, for security purposes.
Indeed, information involved in ubiquitous computing communica-
tions is often privacy-sensitive, and we want to make sure it cannot
be received or intercepted by non-authorized entities.

Access control [13] relies on and coexists with authentication, au-
thorization and audit. Authentication can be made on information
or persons: it establishes who issued a piece of information, or con-
firms the identity of a person. However, to ensure that the identity
is correct, different authentication factors shoud be used. If the per-
son possesses the information related to each factor, it is assumed
that this is the pretended person [11].

Authorization takes places both before system execution, to define
policies of the security system, and after the authentication phase,
to grant a principal access to the controlled system. We will study
in the following section that authorization is most often static or
controlled by applications, leading the users to be considered au-
thorized for a long time. With context changes we cannot assume
that a user is authorized throughout the duration of the use of an
application, even if he is still authentified. We will then explore
works on dynamic authorization.

2. AUTHORIZATION
To extend authorization in order to use dynamic information, we
study how it has been handled in different systems. It appears that
there are three types of authorization: static, quasi-static, and dy-
namic.

2.1 Static authorization
Historically, access control used static credentials to confirm user
identity and was made only when entering the system. For exam-
ple, the login phase of an operating system needs a login and a
password to authenticate a user, and is made only when he logs in.
It can also be an ID card, a fingerprint pattern, or an identification
token. Infrastructure information is sometimes used to authenticate
users. For example, the Network File System (NFS) access control
uses, in its default configuration, the IP address of a client to grant
him access, as long as he still uses the file system.

We model the access control process with state diagrams. In Fig-
ure 1, a user wants to use a system, and he has to authenticate
himself in the first place. Since this is static authorization, if au-



Figure 1: Static authorization

thentication is correct and matches an authorization rule, he stays
authorized and considered trusted until he logs off.

2.2 Quasi-static authorization
Almost ten years ago, static information for authentication and au-
thorization began to be seen as a limitation in several domains. In
distributed computing for example, with Cholewka et al. [3], the
task being done could affect access control on some objects. The
task was extracted from the workflow of the application, and this
dynamic information was considered to be the context of the appli-
cation.

Later popularized by Web applications, session management has
emphasized what we call quasi-static authorization. In these sys-
tems, credentials are rarely changed compared to the lifespan of
an application. Authorization is made at first access of the system,
and periodically renewed to keep users authorized in case of infor-
mation change in authentication or authorization information. This
mechanism is called leasing, and often used in publish/subscribe
systems. We modelled it in Figure 2.

Figure 2: Quasi-static authorization

It is quite similar to the static authorization diagram, except that a
loop appears between authorized and not-authorized states. When-
ever the lease expires, the user has to be authorized again to return
in trusted state.

Quasi-static authorization prevents users to be connected to a sys-
tem forever. A password change, or the introduction of a new
authentication factor in the access control system would eventu-
ally lead to user’s credential reevaluation. As an example of such
system in industry, we can cite Mobilegov Access Control [12]
that uses infrastructure-based authentication in addition to pass-
word based authentication for different kind of systems.

2.3 Dynamic authorization
Static and quasi-static authorization are inadequate for ubiquitous
computing in which user’s context is an important concern, and is
already a part of applications. Not using contextual information
in security concerns could lead to granting a user access without
considering his condition [10]. Contextual information is highly
dynamic, because the user is likely to be moving, as much as other
users in the same ambient space, with their attached devices. Yet,
sensors can also be fixed in the physical infrastructure, like temper-
ature or light sensors. This dynamic information is used to inval-
idate user’s authorization, even if he is still identified by standard

authentication factors.

Thus, we introduce the dynamic authorization model for environ-
ments in which it is needed to frequently check if users are autho-
rized due to changes in dynamic information used for authorization.
This open gates to considering highly dynamic contextual informa-
tion to be used in the access control process. As opposition to static
and quasi-static authorization, dynamic authorization requires to be
rechecked according to changes in dynamic information. It is nec-
essary to dynamically modify access permissions granted to users
when context information or when software infrastructure change.

While in static and quasi-static authorization subjects were trusted
as long as they were logged or for a predefined time, in dynamic
authorization, authorization must be checked at each operation in
the system. This can be done in two ways:

• The first would be to reduce the lease time near zero, and thus
needing subjects to authenticate and subscribe all the time.
Lease time has to be adapted to system’s reactivity, which
is around one second for ubiquitous computing applications
for example. This is very inefficient and consequently a bad
solution for embedded devices populating ubiquitous com-
puting environments,

• The second, to be more efficient, would need the system to
know user’s context all along his use of the system. In that
case, the system could react on user’s context changes by
enforcing authorization policies to determine if the user is
still authorized and can be kept or not the trusted area. We
modelled this system in Figure 3.

Figure 3: Event-driven dynamic authorization

With this second solution, trusted zone exit and re-entery are context-
driven. Since the dynamics of the context and of the application are
different, the access control process is highly reactive. Quasi-static
and static authorization process, in contrast, were driven by the ap-
plication. However, new issues appear with dynamic authorization:

• How can contextual information be collected by the security
system? As a context-aware system, regular contextual infor-
mation collection can be done, using context observers [4].

• How can it ensure that the information is authentic? As
stated Kindberg and Zhang, in their experience in the location-
aware mobile computing CoolTown project [11]: when using
contextual information for access control, the authentication
of the data itself must be done. Indeed, dynamic data are
provided by sensors, and they can be simulated of falsified if
protocols are not constrained as in [11]. In some cases with
group behaviors, information can also be correlated with sur-
rounding entities’ to check forged information [7]. If sensors
are not able to sign information, it has to be authenticated
when users collect it. A trusted observer has to collect the



same information than users in order to authenticate it, and
verify that it is this information that is used by users to ac-
cess the system. We will study more deeply this question in
section 4.

• What about privacy? Of course, placing a trusted entity in
users computing environment can be recusant. Westin [16]
defined privacy as “the ability to determine for ourselves when,
how, and to what extent information about us is communi-
cated to others”. If the trusted entity describes precisely
how contextual information is used, it should be accepted
by users. Furthermore, one must consider that machine-to-
machine communications play a more and more important
role, and that privacy in those cases is not relevant.

A good example of such system are works of Bacon et al., who
introduce in [2] the OASIS (Open Architecture for Securely Inter-
working Services) Role-Based Access Control. It uses credentials
that a user possesses, along with side conditions that depend on the
state of the environment, to authorize him to activate a number of
roles. In their model, they define that environmental predicates can
be used for environmental constraints or context-sensitive informa-
tion. Environmental constraints can be checked by any entity in the
environment of the application, thus it can authenticate dynamic
information used for authorization.

2.4 Synthesis
The Table 1 summarizes the types of authorization and information
used for authentication.

Identity and infrastructure represent subjects information commonly
used. Infrastructure and environment represent contextual infor-
mation that can be used. User infrastructure is populated by all
computing equipment that are in the context of the user, like local
and remote devices. Environment and system infrastructure gather
all information that can be get by anyone or do not depend on the
infrastructure of the user which has to be authenticated. Date and
time are obviously considered as a part of the environment. In some
cases [7, 11], location and speed can be considered as a part of the
system infrastructure because sensors are part of the security sys-
tem’s domain, and thus can be easily verified.

Static or Dynamic
quasi-static

Identity Operating Sys-
tems login

?

User infrastruc-
ture

Mobilegov
AC R©

?

System infras-
tructure and
environment

NFS OASIS[2],
CSAC [7]

Table 1: Classification of authentication factors dynamicity

To our knowledge, no project uses dynamic information for autho-
rization when it is not accessed by the domain of the security sys-
tem, like information from users devices, sensors available through
the context of the user.

3. ACCESS CONTROL IN INTERACTION
PATTERNS

Figure 4: Sequence diagram of trusted zones in a pub-
lish/subscribe pattern

In this section, we focus on how access control is managed in in-
teraction patterns. We consider two entities, A and B. A is the
consumer. He receives information from the producer B. Thus, he
has to be in a valid context, or in other words, A has to be autho-
rized by B.

To emphasize where the problem is, we explain it for the well
known publish/subscribe pattern [5] (Figure 4). Publish/subscribe
systems are based on two kinds of interactions: the subscription and
notifications. Notifications allow the event producer to send infor-
mation to subscribed entities that he does not necessarily know.

The subscription is a synchronous process, like a request-response
pattern. It is used by consumers to register their interest to a specific
event channel and to give information about the connection that will
be used to send events.

Notification is a purely asynchronous process, made of messages
sent by the producer to the consumer. This process thus needs the
consumer to be authorized to receive events. Since access control
requires the consumer to send authentication and authorization in-
formation to the producer, it is practically done when the client
subscribes.

However, since following interactions are only one way messages,
authorization of the subscriber cannot be verified. For static au-
thorization, as we have seen, this is not a problem because after
subscription, it is not supposed to have changed or it is not im-
portant for system security. With quasi-static authorization, the
subscription is accepted only for a defined validity time: the lease.
Subscriber is trusted only for this time, and has to renew his sub-
scription and access, before the end of the lease, to avoid a service
interruption. We call this lease of trust the trusted zone (Figure 4).
This is also modeled in Figure 5: A subscribes and authenticates
to B, which will allow A to receive notifications from B, until the
subscription expires.

What can be done for dynamic authorization of the recipient? Fig-
ure 4 helps to understand where the problem exactly is. The con-
text observer notifies when the context has changed into a non-
authorized context. It is not connected to anything because the



Figure 5: Access control in standard publish/subscribe systems

producer uses the standard publish/subscribe leasing mechanism.
Context changes happen while the consumer is in the trusted zone.
With dynamic authorization, the producer would reenforce the au-
thorization conditions as soon as an event from the context is re-
ceived. With quasi-static authorization, the consumer is still
able to receive notifications, even while his context is not au-
thorized.

We define the context trusted zone as the period during which the
producer can be certain that the consumer is authorized by its con-
text, and obviously, still authenticated. Contrary to the trusted zone
of usual interaction patterns in which information leak can occur,
the context trusted zone ensures confidentiality of messages.

Bacon et al. [1] already explored access control based on contex-
tual information in publish/subscribe systems; with more details,
they focus on a Message Oriented Middleware (MOM) for large
scale architectures with multiple administration domains. They use
a dedicated security infrastructure for credential management (OA-
SIS RBAC [2]). They apply access control only on event brokers
since they are the link to inter-domain networks. Their solution is
thus based on managing security through a layer below the appli-
cation layer: the transport layer.

In the next section, we describe our contribution, how we handle
dynamic access control for asynchronous communications recipi-
ents, in the application layer, and without needing a specific infras-
tructure for security or message management purposes.

4. CONTEXT-BASED DYNAMIC
AUTHORIZATION

We have seen that in context-sensitive computing, static or quasi-
static authorization cannot be used alone because some contexts are
not compatible with the authorization granted in first place. We also
have seen that an efficient solution would require a trusted entity
from the security system to be placed in users’ context to ensure
the authentication of dynamic information used for access control.
We present our solution as a model (4.1) and we explain how it can
apply to all kind of interaction patterns (4.2).

4.1 Model
As depicted in Figure 6, the publisher B sends A messages. Rounds
tagged with Obi represent context observers in A’s context. To
keep things as simple as possible, we consider that they both act as
sensor information observer for A and B, and that they are trusted
entities to B. The problem is described as follows: when B sends
a one-way message to A, how can it ensure that A is in a context in
agreement with B’s policy for recipients?

Our contribution is to dynamically add trusted context observers
in the context of entities, that notify the controlling entity from

Figure 6: Asynchronous communication and contexts

changes in contextual information that are used for end-to-end ac-
cess control.

Moreover, since most observers Obi provide contextual informa-
tion related to a specific information on the near environment of
A, they may vary along with user moves and changes in the infras-
tructure. Access control rules can thus be adapted to users’ context,
based on which observers are currently part of users’ infrastructure.
Figure 7 models the authorization process based on observer infor-
mation. Once subject is authenticated, its authorization status is
bound to the status of validity of observer information.

Figure 7: Authorization based on dynamic information with
observers

When observers are present, authenticated, and that the value of the
contextual information they provide corresponds to an authorized
value, the access is granted. As example, the authorization com-
putation is kept simple, based only on equalities between collected
information of three observers and information known as valid by
the access control system. We can express the authorization pro-
cess with a logic rule: grant ≡ Ob1 ∧Ob2 ∧Ob3 ∧ valid(Ob1)∧
valid(Ob2)∧valid(Ob3). If all observers are present, and that the
information they provide is valid, access is granted. As opposite, as
soon as an observer information becomes unmet, a granted access
is revoked: denial ≡ ¬Ob1 ∨ ¬Ob2 ∨ ¬Ob3 ∨ ¬valid(Ob1) ∨
¬valid(Ob2) ∨ ¬valid(Ob3).

These rules are written as part of the authorization process to grant
access to users. Several rules should exist for one user, each us-
ing different observers. This allow to grant users access based on
contextual information while they evolve in not already known en-
vironments. Rules are evaluated depending on which observers are
available.

4.2 Application to all interaction patterns
We already took the example of publish/subscribe systems to de-
scribe how the problem could appear. However, other interaction
patterns may suffer from the same information leak issue on con-
text changes.

Synchronous interactions. The most representative synchro-
nous interaction pattern is the request/response mode, used in



Figure 8: Sequence diagram with context trusted zones for re-
quest/response pattern

method invocation and Remote Method Invocation (RMI). In this
pattern, two messages are used for each interaction. The first is sent
by the consumer to request the execution of some procedure on the
producer, possibly with parameters. The second message is sent by
the producer to the consumer with the result of the processing.

We depicted in Figure 8 a dynamic authorization example for re-
quest/response patterns. As a synchronous pattern, it is usually
supposed more secure than asynchronous patterns. But as we see
in the figure, the same problem appears in this pattern too.

The first message is used by the consumer to send his contextual or
authentication information in order to grant access to the method
invocation. A context change can occur after this message has been
sent, placing the consumer in a non-authorized context. Moreover,
the execution time of the method may take several seconds, or even
minutes. In mobile environments, the infrastructure changes often,
and these circumstances can happen quite frequently.

With dynamic authorization, as soon as the context of the consumer
gets unauthorized, the procedure processing can be stopped to spare
resources, and the consumer is sent an access denied message. In
contrast, with quasi-static authorization, the producer would not
notice that the context has changed, and he would consider the
consumer to be still in a trusted zone. The message potentially
containing confidential information would be leaked.

Signaling and broadcasting interactions. The third main
class of interaction pattern we could identify is the signaling or
broadcasting. This pattern is probably the most complicated in
which access control can be handled. In DPWS (Device Profile for
Web Services) for example, WS-Discovery, which uses multicast
messages for reactive discovery of Web services, is the only inter-
action scheme of DPWS that does not handle confidentiality [8].
The reason lies in the decoupling that it provides. Indeed, Eug-
ster [5] has identified three types of coupling:

• time: the consumer and the producer have to be online at the
same time. The message is not bufferized, except at operat-
ing system level if this is a distributed interaction.

• space: the consumer is known by the producer. In broad-
casting and eventing patterns, producers and consumers are
often called loosely coupled because they are not bound at
design-time, nor designed specifically to execute one with

each other. The space decoupling often leads to the fact that
several consumers receive the producer’s messages. Like-
wise, in complex publish/subscribe systems, there can be
several producers sending messages in the same application.

• synchronization: the consumer is blocked until the producer
sends the resulting message. This is typically how request/
response is coupled. Asynchronous request/response actu-
ally decouples the synchronization of entities: the consumer
can continue to execute and will be notified that the result
requested earlier is ready.

Signaling and broadcasting are decoupled in space and synchro-
nization. Most eventing systems also have at least these two de-
coupling. The problem actually appears on a lower level: the trans-
port layer. Publish/subscribe systems are space decoupling from
the producer’s point of view, but not from the messaging system’s
point of view. Indeed, consumers have to subscribe, and conse-
quently they are known from the subscription system. Notifications
are then sent using unicast messages to consumers.

With broadcasting, consumers cannot be known. The pattern is
purely one-way, like in TV broadcasting. They are considered in
a trusted zone permanently. This is exactly the same problem that
appears at the application layer of a publish/subscribe system. The
producer may not be aware of subscriptions, and thus cannot deal
with access control for each client. If we want to handle access
control at the application layer, space decoupling has to use cryp-
tography as a means of access control.

In Bacon works [1], group cryptography is used to ensure con-
fidentiality of events between trusted brokers. Keys are updated
when principals are declared unauthorized, and not when they un-
subscribe, which makes updates happen less frequently in this kind
of environment. We will use the same technique to ensure that non-
authorized entities cannot receive messages.

The dynamic authorization can be applied on interaction systems as
long as there is at least one synchronous exchange for trust estab-
lishment. For signaling, a solution still exists when the consumer is
able to reach the producer: the two-step signaling. A first message
is broadcasted, containing no confidential information and only a
basic description of how to reach the producer. The second step is
initiated by consumers registering their interest for the information,
like a subscription in publish/subscribe systems. Then, for notifica-
tions (broadcasts or signals), a group key encryption is used. Only
consumers in authorized context will have access to the decryption
key. As soon as the context of a consumer becomes unauthorized,
the group key is changed and spread to other authorized consumers.

The dynamic authorization in eventing and in broadcasting pat-
terns can be handled the same way because of the space decou-
pling they both offer. This decoupling allows us to consider these
two patterns as a single problem for context-awareness and access
control. The application of this contribution to a specific infrastruc-
ture will allow us to verify it.

5. APPLICATION FOR EVENTING IN WEB
SERVICE FOR DEVICE

We chose to implement our context-sensitive authorization with
two specific architectures and paradigms: Web service for device
for the software infrastructure, and publish/subscribe systems for



asynchronous communication. Reasons of these choices revolve
around two concepts: ubiquitous computing and space decoupling.

For many years, service oriented architectures (SOA) have been
used in home automation, mobile, pervasive and ubiquitous com-
puting to represent as services the sets of functionalities offered by
devices. They offer lots of features discussed in [14] such as en-
capsulation, dynamicity, discoverability and interoperability. They
evolved from standard SOA to SOA for device (SOAD) by adding
two main features: decentralized reactive discovery and asynchro-
nous communications.

Decentralized reactive discovery has been popularized by projects
such as SLP 1 or Jini. They suppress the need of a service registry
tracking all services active in a network domain. They use mul-
ticasted or broadcasted messages to notify that services appear or
disappear. Asynchronous communications used by SOAD like Jini
are events in a publish/subscribe scheme.

These evolutions allow to create reactive dynamic distributed ap-
plications, suitable for ubiquitous computing environments. In ad-
dition, when Web technologies are used to implement SOAD, in-
teroperability between all entities is enabled, whether they are het-
erogeneous devices or simple software services. Only two imple-
mentations of Web services for devices currently exist: UPnP 2 and
DPWS [8]. UPnP has been created by the UPnP Forum, under the
leadership of Microsoft in 1999. It has never be standardized, but is
used in many objects of everyday life, like home gateways, or me-
dia centers. DPWS appeared in 2004, as a replacement for UPnP,
and as a technology based on several Web services standards, like
WS-Discovery or WS-Eventing.

Publish/subscribe systems use 1 → N communication scheme:
a publisher is able to accept several subscriptions from different
clients. Thus, all consumers are notified when issuing an event.
This feature will require that observers are managed for each sub-
scriber to the eventing channel, and not for each eventing channel.

5.1 Service for device composition
To create applications from this infrastructure of services for de-
vices, we use the Service Lightweight Component Architecture
(SLCA) [6]. It allows to dynamically orchestrate and compose
services for devices using lightweight components. Components
are called lightweight because they execute in the same memory
addressing space, the same process, and the same component con-
tainer. The container provides the least possible technical services,
also known as non-functional concerns helpers. Distribution thus
has to be explicit: if a component needs to communicate remotely,
it has to embed the code to do so. Obviously, we created some
external tools that can generate predefined components. From Web
services for devices description interfaces for example, we generate
client components, that we call proxy components.

Containers manage assemblies of components fully dynamically.
Component types can be loaded and unloaded, component instances
and bindings between them can be added or removed at run-time.
Proxy components are generated, loaded and instantiated dynam-
ically and automatically. Thus, we can follow the presence of a
service in a container, by adding or removing proxy components
when the service appears or disappears.

1The Service Location Protocol.
2Universal Plug and Play Forum: http://www.upnp.org/

Applications or new functionalities can be created from existing
services on the infrastructure by managing an assembly of compo-
nents inside a container. Proxy components are combined together
or with purely functional components to transform information.
SLCA components and services for devices communicate mostly
using event-based communication patterns, which, more than de-
coupling entities and increasing dynamicity, will allow to react to
context changes efficiently.

Finally, containers can export functionalities created by component
assemblies as a new web service for device using probe compo-
nents. Each container has a dynamic functional service interface.
When a probe component is instantiated or destroyed, the inter-
face is dynamically modified: a method or an event is added or re-
moved. Consequently, interfaces of existing services can be cloned
using adequate probe components. Such services can be secured
by adding functional or proxy components to the assembly. Hierar-
chy in the model is possible but has to use the service layer, which,
moreover, allows it to be distributed.

5.2 Composite service for device adaptation
Since compositions are based on lightweight components, service
compositions are fully dynamic. A paradigm called Aspect of As-
sembly [14] allows to adapt composite services according to spec-
ified rules. Aspects of assembly are pieces of information describ-
ing how an assembly of components will be structurally modified,
keeping black-box property of components. Modifications include
adding components and bindings between them. Aspects of As-
sembly consist of two parts, like regular aspects found in Aspect-
Oriented Programming (AOP) [9]: pointcut and advice. Pointcuts
describe to which components the modifications described by ad-
vices have to be weaved (applied).

If some of the required components expressed in a pointcut are not
available, the advice won’t be weaved until they become all avail-
able. Since service discovery is a reactive process and that contain-
ers notifications are events too, aspects can be weaved in response
to the appearance of a service (and thus a device) on the infrastruc-
ture.

Moreover, aspects of assembly provide associativity, commutativ-
ity and idempotence properties when several aspects are enabled to
be weaved at the same time [14].

5.3 Implementation
The service for device infrastructure and SLCA are used for all
parts of the application: publisher, subscriber and observers. Ob-
servers are trusted entities from the publisher’s point of view thanks
to dynamic insertion of authentication components with aspects of
assemblies.

We created a simple example of application, modelled in Figure 9.
An event publisher service, which can be a sensor or any device,
is secured by the composite service on the left. The client of this
secured service is a composite service to simplify the figure. This
can of course be applied to already existing service clients by only
modifying the location (URL) of the service used with a security
proxy composite service. Observers are managed in the context of
the client by another composite service, to simplify communica-
tions.

An idea behind the use of lightweight components in composite
services is to enable adapting non-functional concerns in the same



Figure 9: Implementation using SLCA

layer and the same way than the functional core of the application.
We use aspects of assembly in the publisher’s and subscriber’s com-
posite services to add the access control logic.

Since we manage all concerns of the application on the same layer,
we cannot deal directly with subscriptions handled by the underly-
ing service infrastructure. We have to manage authorizations for all
subscribers at the application layer, as we have studied in (4.2).

Events will be encrypted with a group key. When observers notify
changes of contextual information, if an authorization rule becomes
invalid, the security system in the composite service of the event
producer will change the group key. Modifications of the key are
spread to the subscribers of the event channel using the observers.
Indeed, since they are in subscribers’ context and they are trusted
parties, they can safely deliver the new key.

Aspects of assembly allow us to manage different authorization
rules based on appearing and disappearing trusted observers in the
environment. Thanks to properties of aspects of assembly, we can
enable several rules to be used at the same time for dynamic au-
thorization. Even if they are enabled, they won’t apply until all
observers needed by the rule, defined in pointcuts, are present. The
reactive discovery process of Web service for device makes adap-
tation of authorization rules reactive. This is useful in cases of con-
text overlappings and transitions, or simply to ensure that access
won’t be denied because of slight changes in the highly dynamic
infrastructure of ubiquitous computing.

5.4 Validation
We validate our contribution by three means: we calculate the reac-
tivity of the dynamic authorization process ; we compare the num-
ber of message exchanged for the access control process and the
amount of unauthorized messages received with quasi-static au-
thorization and with our dynamic authorization.

The process of taking into account changes in contextual informa-
tion in the authorization involves several operations. Hence, the
time elapsed between the variation of a contextual information and
the modification of the authorization is the time needed for those
operations: data processing by the observer (o), communication be-
tween the observer and the proxy component of the event provider
(c), and reprocessing the authorization leading to a key change in
the composite authorization service (p). reaction time = o+ c+
p. o and p are local data processing and take typically less than 1
ms to execute. c depends on how many hops there are between the

subscriber and the event provider. In ubiquitous computing, wire-
less networks are often used, so c may suffer from an important
variance. An average of 40 ms then constitutes the predominent
value of the reaction time.

In quasi-static authorization, like lease-based systems, the value
of the lease is several orders higher. The UPnP specification for
example recommends it to be at least half an hour. In security aware
systems though, it shouldn’t be less than one minute to be efficient
enough. The reaction time would then be at maximum the value of
the lease, since the authorization process is reprocessed at the same
time.

The number of messages used for the authorization process in quasi-
static authorization is periodically increased. Indeed, the leased
subscription makes those messages to be send at every lease. Thus,
this number follows a linear law, function of the time spent using
the system. In dynamic authorization, messages are sent only when
dynamic information is modified. It can be higher than the lin-
ear number of messages from quasi-static authorization if context
changes more often than the lease time. Else, it can be lower in
number of message sent, but still more reactive.

The number of received non-authorized messages in dynamic au-
thorization is zero. In quasi-static authorization, depending on the
rate of sent events and the length of the lease, it can be very impor-
tant.

6. CONCLUSION AND TRENDS
We have described a solution that allows dynamic authorization
policies based on dynamic information to be used to manage asyn-
chronous communications access control. Reactive management of
dynamic information changes makes the solution efficient. Finally,
context can be actually used as an improvement for access control
systems in the authorization process.

Future works will study in what conditions the reactive discovery
used by service for device can be secured with the implementa-
tion for publish/subscribe eventing we have described. We will
also experience how easily we can modify the dynamic informa-
tion validation to handle inequality operations, like range of values
for context information instead of equalities.

Acknowledgments
This work is supported by the French ANR research program
VERSO in the project ANR-08-VERS-005 called CONTINUUM.

7. REFERENCES
[1] J. Bacon, D. Eyers, J. Singh, and P. Pietzuch. Access control

in publish/subscribe systems. In Proceedings of the second
international conference on Distributed event-based systems,
pages 23–34. ACM New York, 2008.

[2] J. Bacon, K. Moody, and W. Yao. A model of OASIS
role-based access control and its support for active security.
ACM Transactions on Information and System Security
(TISSEC), 5(4):492–540, 2002.

[3] D. G. Cholewka, R. A. Botha, and J. H. P. Eloff. A
context-sensitive access control model and prototype
implementation. In In: Information Security for Global
Information Infrastructures: IFIP TC 11 Sixteenth Annual
Working Conference on Information Security, pages
341–350. Kluwer Academic Publishers, 2000.



[4] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context
is key. Commun. ACM, 48(3):49–53, 2005.

[5] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The
many faces of publish/subscribe. ACM computing Surveys,
35(2):114–131, 2003.

[6] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill.
SLCA, composite services for ubiquitous computing. In
Proceedings of the International Conference on Mobile
Technology, Applications, and Systems (Mobility). ACM
Singapore, 2008.

[7] R. Hulsebosch, A. Salden, M. Bargh, P. Ebben, and
J. Reitsma. Context sensitive access control. In Proceedings
of the tenth ACM symposium on Access control models and
technologies, pages 111–119. ACM New York, 2005.

[8] F. Jammes, A. Mensch, and H. Smit. Service-oriented device
communications using the Devices Profile for Web Services.
In Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing, pages 1–8.
ACM New York, 2005.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. marc Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP. SpringerVerlag, 1997.

[10] Y. Kim, C. Mon, D. Jeong, J. Lee, C. Song, and D. Baik.
Context-aware access control mechanism for ubiquitous
applications. Lecture Notes in Computer Science (LNCS),
3528:236–242, 2005.

[11] T. Kindberg, K. Zhang, and N. Shankar. Context
authentication using constrained channels. In Fourth IEEE
Workshop on Mobile Computing Systems and Applications,
pages 14–21. IEEE Computer Society, 2002.

[12] Mobilegov. Mobilegov Access Control R©. See related
information on http://www.mobilegov.com/, 2009.

[13] R. Sandhu and P. Samarati. Access control: principle and
practice. IEEE Communications Magazine, 32(9):40–48,
1994.

[14] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin,
D. Cheung-Foo-Wo, E. Callegari, and M. Riveill. WComp
Middleware for Ubiquitous Computing: Aspects and
Composite Event-based Web Services. Annals of
Telecommunications (AoT), 64(3–4):197–214, Apr 2009.

[15] M. Weiser. The computer for the twenty-first century.
Scientific American, 265(3):94–104, Sep 1991.

[16] A. Westin and O. Ruebhausen. Privacy and freedom.
Atheneum New York, 1967.


