
SLCA, Composite Services for Ubiquitous Computing

Vincent Hourdin
MobileGov et I3S

2000, route des Lucioles
06901 Sophia-Antipolis France
hourdin@polytech.unice.fr

Jean-Yves Tigli
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

tigli@polytech.unice.fr
Stéphane Lavirotte

I3S (UNS - CNRS)
930 Route des Colles - BP 145
06903 Sophia-Antipolis France
stephane.lavirotte@unice.fr

Gaëtan Rey
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

rey@polytech.unice.fr

Michel Riveill
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

riveill@unice.fr

ABSTRACT
Main concepts to handle in ambient computing applications
are hard to integrate at the same time. After studying mid-
dlewares handling a part of the challenge, and after studying
possiblities of main paradigms in name of CBSE and SOA,
we present our Service Lightweight Component Architec-
ture (SLCA) model, based on three main paradigms: Web
services, enabling entities interoperability, dynamic discov-
ery, and distribution; lightweight component assemblies to
create composite Web services, allowing a high dynamic-
ity; and finally events, giving applications reactivity and a
maximal decoupling between entities, thus enabling an even
higher dynamicity. This leads to conciliate both service ori-
ented and event driven approaches in a new way to manage
a graph of cooperating services in ubiquitous systems.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—do-
main engineering, reuse models

Keywords
Ubiquitous computing, web services for devices, event driven
architecture, software composition, service oriented architec-
ture, component-based software engineering

1. INTRODUCTION
Ubiquitous computing, as described by Marc Weiser [29],
relies on devices in the user’s environment or the one of ap-
plications he’s using. Indeed, with the miniaturization of
computer hardware, processing units become invisible and
integrated in buildings, clothes, vehicles, and so on. Appli-
cations must then evolve and offer the required dynamicity
to handle context changes due to environment evolutions.

Software frameworks tackling this kind of challenges are
commonly called ubiquitous computing middlewares. Nu-
merous characteristics have been described by two survey
works of ubiquitous computing middlewares [19, 21]. If we
put apart crosscutting concerns, like security, main char-
acteristics are: interoperability between entities, the envi-
ronment is made of lots of devices from different hardware
architectures, programming languages, or communications
protocols or mediums; reactivity, required by context-aware
applications in order to handle quickly state changes of the
environment or applications, as well as interactions with the
user; dynamic adaptability, allowing applications to handle
external changes and adapt to their context of execution
at run-time; and finally, ubiquitous computing applications
are often made of several distributed entity, which leads to
mobility of applications.

In this article, we study how existing approaches for ubiqui-
tous computing middlewares are taking into account these
characteristics. Then, we study component and service pro-
grammation paradigms, and what are their key points for
ubiquitous computing, and how they integrate events. We
propose the SLCA model to meet ubiquitous computing
problems, based on an event-based service infrastructure
and lightweight component assemblies creating composite
services. Finally, we describe an experimentation, using an
implementation of the model.

2. MIDDLEWARES FOR UBIQUITOUS
COMPUTING

Ubiquitous computing is an omnipresent computing [16] in
the environment, through a large number of objects and new
devices in our everyday life (everyware [13]). They can be at
the same time mobile, and integrated to the physical envi-
ronment [14]. They increase application fields of computing
by a growing quantity and diversity of smart devices in the
physical environment of users [30]. The ubiquitous space be-
comes then more and more interactive and communicating.

It is therefore a computer science evolving in a physical en-
vironment made of users, devices, smart objects and which
has to adapt permanently to changes of the environment.
Lots of research works explore this problem. We will study
ways they put forward to take into account issues described

in the introduction.

Projects Gaia [23], Oxygen [1] and Aura [26] head towards
user’s tasks migration in a mobile environment, and thus
deal with the problem of mobility. Gaia bases itself on ac-
tive spaces, such as smart rooms or living environments. It
uses the concept of distributed operating system, in which
all inputs, outputs and processing units of a room are con-
sidered as a single computer, which allows the migration of
processes or activities from an active space to another. Oxy-
gen is more user-centered, aiming directly at computer/man
interaction, with voice and vision technologies. More con-
cretely, it defines topologies of dynamic smart networks, and
embeds code in mobile devices, which allow the user to con-
tinue using services while moving. Aura defines the concept
of personal aura of information to study the attention of the
user to migrate tasks from a computer to another, basing
mostly on data from sensors.
These projects can migrate tasks from an execution con-
text to another, but they use centralized approaches to data
management and environment discovery. For Oxygen, using
objects limits interoperability and needs the middleware to
be installed inside the entities of the environment. Adapta-
tions are thus limited to known entities at design-time, as
well as in Aura, some situations do not allow the extraction
of the expected behavior, the programming is implicit.

An example taking charge of reactivity is the CORTEX
project [8]. It uses sensors to capture the execution context
of an application and react adapting applications. COR-
TEX proposes a novel sentient object model to address the
emergence of a new class of application that operate inde-
pendently of human control. Those sentient objects (mostly
based on sensors) use the publish/subscribe paradigm to get
information from the environment, and provide new ones,
in large-scaled networks. The execution framework modifies
dynamically the behavior of sentient objects, thus needing
introspection capabilities on objects.

With the multitude of different devices types present in
an ubiquitous computing environment, heterogeneity of dis-
covery and communication protocols for devices become a
major problem when designing applications. The Amigo
project [28] proposes a middleware addressing the specific
problem of interoperability. It integrates seamlessly devices
and services relative to the application in a domestic system.
Devices are dynamically discovered, independently of their
type or communication protocol. On the contrary, COR-
TEX, with objects based on COM, makes it difficult to ex-
tend the execution environment to varied devices.
Moreover, we have seen an industrial willingness clearly dis-
played to extend computing standards to those new devices
and objects: standards like UPnP, Jini [6], or OSGI. The
first two describe service-based middleware, enabling the dy-
namic discovery of devices in the distributed environment.
OSGi concern is to create local services-based applications,
with the ability to create composite services, eventually com-
municating with UPnP or Jini services. However designing
composite services based on a simple service composition re-
quires to know services interfaces and referring to it in the
code, which limits dynamicity.

Finally, lots of other works provide a software framework,

based on distributed objects [5, 24] or components [7, 9, 31]
aiming in making ubiquitous or mobile application design
easier. They are dynamic, and provide adaptation capabili-
ties for the applications they execute, but they don’t always
handle reactivity or interoperability or more concepts stud-
ied in the next section. Adaptation mechanisms [12] are
however out of the topic of this paper, in which we define an
architecture model adapted to the design of dynamic ubiq-
uitous computing applications.

Table 1: Main characteristics of major works in
ubiquitous computing

A
m

ig
o

A
u
ra

C
O
R
T
E
X

G
ai
a

O
x
y
g
en

Interoperability X x x
Reactivity x X x
Dynamicity,adapt. x x x x
Mobility x X X X

The table 1 summarizes the problems aimed by the differ-
ent projects we have seen, noted ‘X’. Some other problems
are partly treated, or derive from the main choices, they
are noted ‘x’. All of these projects have a precise goal, and
don’t provide an adapted solution to all problems at the
same time. Aura approaches, but aims mobile computing,
without giving the needed interoperability or extensibility
for ubiquitous computing. Software paradigms and tech-
nological choices underlying these different approaches are
difficult to study because they are not always the main con-
cerns [20]. We will study them more deeply, since they are
the basis for meeting the challenges of ubiquitous comput-
ing, including the two main: component-based software en-
gineering (CBSE) and service oriented architectures (SOA).

3. PARADIGMS FOR UBIQUITOUS COM-
PUTING

For over a decade, component and services have evolved to
provide new ways of designing dynamic and heterogeneous
applications. These two key points of ubiquitous computing
applications place them at the base of a large number of
works in the field.

3.1 Components
Systems based on components are born from an evolution of
the object-oriented programming to address the problems
of reuse of code in this paradigm, mostly due to the en-
tanglement of classes. “A software component is a unit of
composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can
be deployed independently and is subject to composition by
third parties” [2]. Applications are then assemblies of com-
ponents, made of instances of component types (as well as
class instances for objects), and bindings between those in-
stances. Lighter and more dynamic component models (Jav-
aBeans, .NET components) contain no reference to other
components at design-time. This principle is called late

binding or also control inversion. Components from these
models are then more easily reusable, dynamic, and adapt-
able. Other models (EJB, CCM, Fractal) have dependencies
towards other components, through their required interfaces.
The file corresponding to the provided interface of a required
component must indeed be known at compile-time.

Non-functional properties. Most frequently, component
execution frameworks embbed a number of non-functional
properties, also called technical services of the framework,
aiming in making programming of non-functional parts of
component easier, like life-cycle management or persistence.
This latter makes often loose a considerable execution time,
when global message passing systems are implemented, and
consequently, limits the use of such component models to
richer hardware architectures. Generally, the more techni-
cal services a framework offers, the less simple it is to control
precisely application execution and to adapt its behaviour.
Of course, some projects propose having dynamically con-
figurable technical services, but are implemented as compo-
nent grafted to components. An approach based on optional
components would permit to adapt technical services like the
rest of the application.

Hierarchy. Some component models, like Fractal [9] or
Darwin [18] allow to define a hierarchy between components,
constituing composite components with internal component
assemblies. However, interfaces of composite components
are not dynamic, and their adaptation needs to generate
pieces of code, like in the SCORPIO [7] approach, which
modifies the structure of component assemblies to create
new composite components.

3.2 Services
Services oriented architectures (SOA) are based on compo-
nents concepts concerning separation of concerns between
different entities, and the use of functionalities through in-
terfaces. Their main asset is the loose coupling between ser-
vices, which provides a large dynamicity, reusability and au-
tonomy. Here is the definition of the OASIS reference model:
[17] : “SOA is a paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer,
discover, interact with and use capabilities to produce desired
effects consistent with measurable preconditions and expec-
tations”. Services are adapted to distributed programming.
They provide communications capacities between services,
and arrival or vanishing notifications of service providers.
We can outline that distribution is an important problem in
ubiquitous computing, since devices are distributed in the
environment.

Concepts of services and components are well defined but
can overlap on certain points. We will study them in the
next subsection, then we will focus on characteristics of ser-
vices for ubiquitous computing.

3.3 Components or Services?
The border between services and components is often blurred.
Some complex component models offer functionalities simi-
lar to services ones: distributed programming, dynamic dis-
covery, interoperability... They then allow the deployment
of an application on several nodes of a network. The impor-

tant point we emphasize in ubiquitous computing is to cre-
ate applications able to adapt to environment changes, like
devices appearing, more than ordering the changes. More-
over, services have an autonomous existence, and have no
information on their use in applications, which seems more
appropriate when used for devices. Therefore, we base our-
selves on services to communicate with various entities in
the environment, devices included, and on components for
their adaptation capability.

Locality. Lightweightness of component or services mod-
els depends mostly on two criteria: the quantity of non-
functional properties included, and the locality. The local-
ity determines the execution space of entities, which can be
local or distributed. Gather entities in the same memory ad-
dressing space enables better communication performances
between them, but also keeping a state of the local appli-
cation regardless to variations of the environment. OSGi
services, JavaBeans and .NET components are examples of
entities executing in the same locality.

Black boxes. Their capacity to be distributed, and their
greater autonomy require services to use the concept of black
box entities. They limit interactions with a service (or com-
ponent) to the use of their required and provided interfaces,
forbidding direct access to implementation, for example for
behaviour adaptation purposes. Using black boxes promotes
reusability, since a component is chosen for its functional-
ity and not for its implementation. In hierarchical models,
composite components are most often white boxes, allowing
modifications of their internal structure, but still without
sight inside basis components [9]. We will use this approche
in our works.

CBSE and SOA are two main programmation paradigms.
They provide important characteristics in terms of entity de-
coupling and thus a great dynamicity. The hierarchy makes
even easier program designs, enabling a better structura-
tion, and black boxes enabling a better reusability. Non-
functional properties automatically provided can play an
important role in the ease of development, but also in ap-
plications lightweightness. We will now study evolution of
services, which have lead to their diversity of use, specially
in ubiquitous computing applications.

3.4 Services Evolution
The use of SOA to create applications based on physical or
virtual devices proved its worth for almost ten years, with
Jini (1999) and UPnP (1999), then more recently DPWS
(2004). Indeed, like services, devices are autonomous, in-
dependant, and provide a set of functionalities. In ubiq-
uitous computing, the user is moving in an environment
made of numerous mobile devices, with which communicat-
ing schemes evolve. Web services for devices [10] include
concepts of services and event frameworks, as well as decen-
tralized and dynamic discovery. While they have been exist-
ing for years, a convergence is occurring with the outcome
of new SOA (Advances SOA), which integrate event-driven
architectures (EDA) with SOA. We will now study main
characteristics of SOA, which have allowed this evolution
towards services for devices.

Interoperability: two types have appeared. The first one,

at the middleware level, with CORBA, interoperability of
entities of a distributed application was put forward. CORBA
defines a service Interface Description Language (IDL), used
to generate skeleton code of services in different program-
ming languages. The framework then marshalls messages
between objects or services. So, CORBA reaches interoper-
ability between programming languages, and hardware ar-
chitectures. With the same goal, Web services were later
created, using Web technologies like HTTP and XML to de-
scribe and communicate with services. These technologies
do not depend on an operating system, or on a program-
ming languages, making Web services easily interoperable,
as long as TCP/IP is available. This meets perfectly the
interoperability problem of ubiquitous computing entities.

The second type of interoperability is the framework’s one,
reached by programming languages executed by a virtual
machine, like Java for the OSGi standard [3]. Its goal was
to make services providers from different businesses collab-
orate to create something bigger than only one could do, or
to deploy services on domestic gateways of their customers.
Services are then portable, but collaborate only in the same
memory addressing space, on only one machine, while they
can be deployed on several distinct OSGi framework.

Event-based communications: interactions and commu-
nications between services have also evolved a lot. Tradition-
ally, they are remote procedure calls, like RPC. The question
of control flow passing from a service to another when the in-
vocation is made is rarely defined. When a service invocates
a method of a remote service, obviously, it should suspend
its execution flow until the return is made, eventually with
return values. However, asynchronous method invocations
allow the calling service to continue execution, notifying it
with a callback when the invocation is done.

Method invocation communications are well fitting to data
processing applications or information services. In ubiqui-
tous computing, users (human beings or services) wish to be
notified by services when a change have occurred in data or
in the environment. Publish/subscribe mechanisms or event
notifications are born from this need of reactivity in appli-
cations. CORTEX uses the anonymous publish/subscribe
STEAM middleware, in order to get behaviours which are
independent from traditional blocking communication para-
digms problems. Furthermore, events provide a great de-
coupling capacity to entities. Data producers and consum-
mers are not specially designed for a specific use, and do
not have information on the number of subscriptions. More-
over, with event models without message queues, like .NET
component’s one, emitting an event corresponds to direct
control flow passing from a component to another, and then
allow a better control flow handling in applications.

Decentralized dynamic discovery: older service mod-
els relie on centralized architectures, like CORBA broker or
UDDI Web service registry. When they become available,
service providers register to the registry so consummers can
discover and use them. They will then be able to make a
search on the registry matching some optional criteria, and
find providers which fit to be used for the application. Some
service registry propose consummers to be notified of avail-
ability changes of services, in order to react fastly possible

to infrastructure changes [3, 25]. But this mechanism must
not be assimilated to an event communication, since they
are only sent by the framework, and have no functional vo-
cation. Gaia and Aura use this mechanisms, via CORBA.

The mechanisms put forward for the discovery of services
in an ubiquitous environment propose, generally, not to use
a service registry. Lying on a fixed architecture when the
application or the user are mobile, and when visible enti-
ties fluctuate fastly, is not an optimum solution, since the
registry itself can be unreachable. Decentralized search so-
lutions are then implemented, based on message multicast,
like SLP used by Amigo and CORTEX.

Dynamicity et adaptation: dynamicity in SOA is intrin-
sic: service communicate between each other through their
provided and required interfaces, but never address imple-
mentation directly. This allows several service providers to
implement an interface, and have several implementations
available at the same time in the environment. The arrival
or departure of a service provider being notified, as we have
just seen it, the service consumer can switch from one to
another during execution. Adaptation of a service-based ap-
plication depends of mechanisms put in place in the service
orchestration or composition platform.

We have seen that services are no longer reserved for mas-
sive applications in information systems, but more and more
evolve towards all types of computing, specially towards
ubiquitous computing. Indeed, they are now providing event-
based communications, a great interoperability handling, de-
centralized dynamic discovery, and still a great dynamicity.
But gaps are still present for the creation of ubiquitous com-
puting applications only based on services.

3.5 The Emergence of Multi-Paradigms for Ser-
vice Composition

As we saw, components fit well to the application adaptation
problem, while services fit more to heterogeneity handling
and entities distribution. Interoperability on communica-
tion protocols, hardware, and programming languages can
be handled by Web services. Reactivity needs an event-
ing mechanism to spread information to services of the en-
vironment when it becomes available, moreover favouring
decoupling and better adaptability. However, creating ap-
plications based only on services can reveal complex and
hardly adaptable, since discovered services, or more exactly
their interface, have to be known at design-time. Also, an
application based only on components can hardly handle ex-
ecution context variations and communication with devices.
Multi-paradigms systems have thus emerged, like Advanced
SOA a.k.a. SOA 2.0, which use services and events, or SCA
(Service Component Architecture) [4], dedicated to service
composition. SCA defines a component and service archi-
tecture, using components to manipulate services orchestra-
tions, and create composite services. SCA corresponds to
the creation of applications for information services, and is
not adapted to light targets nor to the dynamicity of perva-
sive environments. Indeed, the execution framewok provides
a set of technical services, like life-cycle management with
lazy instantiation, or a reduced transaction handling, called
conversation. Moreover, the structure of a composite service
is defined at compilation-time, and is not dynamic.

We thus propose the SLCA model, which has the goal to
define a dynamic architecture for service composition, taking
into account all problems of ubiquitous computing, taking
advatage of various paradigms presented.

4. THE SLCA MODEL
SLCA (Service Lightweight Component Architecture) is a
model of architecture for service composition based on an as-
sembly of lightweight components. The SLCA model relies
on a software and hardware execution environment evolv-
ing dynamically. We define this environment as a set of
resources, which are as much software/hardware entities for
which the application does not drive but adapt to the ap-
pearance and disappearance of entities.

Following the reasons mentioned in previous chapters, we
propose an architecture taking into account three main para-
digms:
– Web service oriented architecture. Ubiquitous com-
puting applications are then a graph of Web services and
composite Web services. Interoperability, distribution, and
discoverability are then assured.
– Lightweight assembly of component. Composite Web
services are created from a dynamic assembly of black box
components, executing in a local container, which doesn’t
provides mandatory technical services. Dynamicity of ap-
plications is then provided, and reusability is increased.
– Events. They are taking place in the model at the services
level, with Web services for devices for example, as well as in
lightweight assemblies of components. Their advantages are
twofold: they promote reactivity of systems, and increase
decoupling between entities, and thus dynamicity of appli-
cations.

SLCA thus defines a compositional architecture model based
on events, to design composite Web services, and increment
the cooperation graph of services and applications. The en-
vironment consists of mobile users interacting with the world
or other users with worn or mobile devices. We see them
as services momentarily available in the infrastructure, in
which event communications between everyday objects re-
place classical workflows between services.

4.1 Composition for New Services
SLCA is based on a service infrastructure using events, and
dynamically discoverable in a decentralized way. They rep-
resent devices used in ubiquitous computing applications, as
well as composite services created by SLCA. Interoperability
is maximal, thanks to the use of Web services.

The architecture is completely dynamic. Services appear
and vanish on the network reflecting the presence of de-
vices, without knowing beforehand any service registry. It
is possible to take into account these changes in applications
without knowing what devices shall be met at design-time.
Indeed, from the XML description of Web services, it is pos-
sible to generate automatically proxy components which will
communicate with services of the environment.

The service infrastructure of a SLCA architecture is thus
used for the discovery and the communication with devices
and composite services distributed in the environment. Ap-
plications are designed by service composition mashup, as-

sembling lightweight components. A composite service then
contains an assembly of components, in a container. Proxy
components to other Web services are thus instantiated in
the container of a composite service, and create applications
from services present in the environment. Moreover, since
the container is inside a composite service, it also has a ser-
vice interface, and functionalities created by the component
assembly can be seen by other composite services. Then, a
composite service can create an application communicating
with another composite service. The concept of hierarchy is
then introduced, through the service layer.

A composite service (container) provides two service in-
terfaces (Fig. 1). The first one, the dynamic functional inter-
face, allows publishing and accessing functionalities provided
by the composite Web service; the second one, the control
interface, allows dynamic modifications of the internal com-
ponent assembly which provides these new functionalities.

Figure 1: Composite event-based Web service

The dynamic functional interface exports events and
methods of the internal component assembly using probe
components. Adding or removing a probe component dy-
namically modifies the functional interface and its descrip-
tion in the corresponding composite service. Adaptation to
environment variations, can be made by modifying the inter-
face of a composite service, without stopping its execution.
Two types of probe components exist (Fig. 2): sinks, which
add a method to the composite service interface, and which,
in the internal component assembly, has only an output port.
The invocation of the method from the service interface thus
emits an event in the component assembly. The second type
of probe is the source, which adds an event to the composite
service interface, and has only an input port. The invoca-
tion of the method from the component interface thus emits
a Web service event.

The control interface addresses dynamic structural mod-
ifications of the internal component assembly. It provides
methods for adding or removing component instances, types,
or bindings, and also to get information about the assembly.
Therefore, a client, which can be another composite service
using a proxy component for this service, can act on the
structure of a composite service. The structural adaptation
of composite services and applications is thus possible in the

model, by its own entities.

Compositepackage WComp[]

Composite Service

StandardComponent

FunctionalInterface

ProbeComponent

ProxyComponent

Source

+name

Sink

+name

ControlInterface

+loadType()
+unloadType()
+addBean()
+removeBean()
+addLink()
+removeLink()
+getADL()
+setBeanProperty()

ComponentAssembly

ComponentInstance

+instanceId
+publicEnv
-privateEnv

SLCA Container

Link

+name : String

sources

0..*

sinks

0..*

functionnal

1

structural 1

components

0..*

assembly

1

linkImplementation

0..*

links

0..*

Figure 2: SLCA Meta-model: interfaces of compos-
ite services

Colors of the UML diagram of Fig. 2 match those of Fig. 1 to
make the reading easier. Proxy components allow services of
the environment to be used in the composite service, while
probe components allow new services to be added to the en-
vironment, which can eventually be used by other composite
services.

4.2 Lightweight Component Assemblies
SLCA uses lightweight components to design composite Web
services. As we saw, a composite service encapsulates the
SLCA container which contains a dynamic lightweight com-
ponent assembly. The component model LCA (Lightweight
Component Architecture) is a model derived from Beans [27],
adapted to other programming languages, with concepts of
input and output ports and properties.

These components are called ‘light’ for several reasons. The
first is that they execute in the same memory addressing
space, and in the same processus, so their interactions are
reduced to the simplest and the more efficient: the func-
tion call. The second reason, which stems from the first, is
that they don’t embed non-functional code for middleware
or other irrelevant technical service in this local environ-
ment. Their memory footprint is then reduced and they are
instantiable and destructible quickly. To finish, they don’t
contain any reference between them at design-time, and re-
spect black box and late-binding concepts. The dynamicity
of the model is thus maximal, since they use events to com-
municate between them, components are fully decoupled,
and highly reactive.

The only non-functional code present in the components is

event management and properties accessing. Higher level
programming languages define these operations; component
code is then a simple object, like JavaBeans or .NET com-
ponents, not overloaded with code injection for any pur-
pose. The container does not provide technical services eas-
ing the programmer work, but consequently allows the cre-
ation of components with various requirements, like compo-
nents needing to access hardware and thus low-level func-
tions. Adding non-functional properties, like security, jour-
naling, or persistence of messages can be done by adding
components in the assembly, guaranteeing dynamicity of the
model.

As described in the LCA model (Fig. 3), components have
an interface, defined by the component’s type. This inter-
face is a set of input ports (methods), and output ports
(events), each one being typed by its parameters, and hav-
ing an unique identifier. Interactions between components
are bindings. They link an output port of a component to
one or more input port of components. Ports being explicit,
no code has to be generated, nor studied by introspection to
know what to modify in components to change the target of
a binding at run-time. When an event is emitted, the control
flow is passed to recipients in an undefined order, but this
can be fixed adding sequence components. When limiting
to unique bindings, and using sequence components, control
flow managing of the application is fully deterministic. Not
having indirections, due to technical services of the frame-
work, gives a full control on control flow, and eases their
debugging.

package WComp LCA[]

Container

ComponentInterface

+metaData

ComponentInstance

+instanceId
+publicEnv
-privateEnv

ComponentFactory

+name

+createInstance()
+deleteInstance()
+getInstances()
+getInterface()
+methodImpl()

ContainerRepository

+loadType()
+unloadType()

+Path

Input/MethodOutput/Event

Link

+name : String

Parameter

+name : String
+type : type

LinkFactory

+createLink()
+deleteLink()
+getLinks()

port

+name

repositories1..*

componentTypes0..*repository 0..*

0..*

interface

1

links

0..*

outputPorts

1..*

inputPort

1

linkImplementation

0..*

parameters

0..*

Figure 3: LCA meta-model: lightweight components

Component types which can be instantiated in a container
depend on the list describing and implementing them in a
repository. This list is also modifiable at run-time. When a
service is discovered, it can be immediately loaded and in-

stantiated in the component assembly to contribute to func-
tionalities of the composite service.

Component assemblies inside composite services can create
applications or new functionalities from services of the en-
vironment (Fig. 4). Unlike the service infrastructure, they
are executed locally, and their logic is not disturbed by ap-
pearing or vanishing of services. When a service used by a
composite service becomes unavailable, there are two possi-
ble reactions: either the state of the assembly is unmodified
until a replacing compatible service is found, either its proxy
component can be removed and the composite service can
be adapted. In the first case, the locality of the assembly
of component makes it able to save its state. Of course,
adaptation mechanisms [12] should be applied to take into
account new requests to the composite service, which may
or may not be able to completely satisfy a request.

Figure 4: Graph of event-based Web services

5. EXPERIMENTATION
As we have seen, SLCA can be used to design composite
services graphs. We can then imagine ubiquitous or mobile
computing applications, using services of the environment
to create new services and adding new functionalities. We
will now study an example which adds a basic authentica-
tion functionality to control access to an interaction service
executing on a tablet PC. Composite service then created
will allow an identified user to access new functionalities,
like the device localization.

The control interface of the composite service allows it to
be managed by several remote tools, like the UPnP wiz-
ard controller. It is a UPnP control point receiving adver-
tisements from services of the environment, which generates
proxy components and instantiate them into a bound con-
tainer. The service (T) of the device to which we want
to add functionalities, the authentification service (A) for
users, and the localization service (L) are thus detected and
instantiated in our composite service (S).

Then, the user has to create, either by hand with a visual
composition of components, or automatically, with a script-
ing controller for example, the service interface of the proxy
component, using probe components. This interface shall be

the same than the interface of T , to which we add new local-
ization functionalities and an authentication method. For
each provided interface of T (each method), a sink probe
component is added, and for each required interface (each
event), a source probe is added in the internal component
assembly of our composite service S.

Figure 5: Graph of WComp assembly

The last step consists in creating links between probe com-
ponents and the proxy components. A sub-assembly of com-
ponents will actually be added to create the new function-
ality that we add to T . In this example, we add a simple
identification method with a login/password couple, which
is sent to A for checking. If the user is authentified, a ses-
sion identifier will be generated and returned, and have to
be used for all future invocations. The localization func-
tionality of the device will be available to users authorized,
through invocations to service L. Thus, the access to the
tablet PC, and to its localization, will be protected by an
authentification mechanism, and a new composite service is
provided, which can be used in other applications. However,
if no network-based solution to hide T is implemented, it will
still be possible to reach it, and use it without localization.
Solutions like a VPN or executing the composite service on
the same computer are possible.

This example is implemented with a projection of the SLCA
model called SharpWComp 2.0, which is a copyrighted soft-
ware in France, used and developped in two programs of the
French National Research Agency (ANR). The first explored
auto-adaptation of software applications to assist people with
disabilities. It is creating interaction devices, so they are
adapted to profiles of reduced mobility people, and self-
adapting to variations of the profile in time. The second
project adds contracts inside composite services, like bound-
ing the exectution time of a service, or catching execution
points of an application to add some actions.

6. CONCLUSION
We have presented our SLCA model for the design of ubiqui-
tous computing applications. It is based on an event-based
Web service composition, providing discoverability and in-
teroperability of devices in the environment, made with in-
ternal lightweight component assembly, for their dynamicity.
Such an architecture allows designing dynamic applications,
according to the principle of classic modularity of reuse of
functionalities of a service or a component by another, es-
pecially when loosely-coupled bindings such as events are
implemented.

Other works focus on the need of a crosscutting modular-
ity, easing incremental evolution of applications, and imple-
menting replicable modification schemes on a large number
of services. If we consider the experimentation, we under-
stand that managing the availability of services of the en-
vironment can be a difficult and transversal task. The As-
pect paradigm well known in the object oriented program-
ming field [15], is now widely applied to other architectural
paradigms (AO4BPEL for orchestrations [11], FAC for com-
ponents [22], and so on). Our SLCA model takes the same
direction, evolving towards an approach using the concept of
Aspect of Assembly (AA). It allows a dynamic evolution and
adaptation of the graph of services for ubiquitous computing
systems.

7. REFERENCES
[1] MIT Oxygen project. http://oxygen.lcs.mit.edu/.

[2] WCOP’96: Summary of the WCOP’96 workshop in
ECOOP’96, 1996.

[3] OSGi Alliance. http://www.osgi.org/, 2002.

[4] Service Component Architecture specification.
http://www.osoa.org/, 2006.

[5] M. Anastasopoulos, H. Klus, J. Koch, D. Niebuhr, and
E. Werkman. DoAmI - a middleware platform
facilitating (re-)configuration in ubiquitous systems. In
System Support for Ubiquitous Computing Workshop.
At the 8th Annual Conf. on Ubiquitous Computing
(Ubicomp 2006), Sept. 2006.

[6] K. Arnold, editor. The JINI Specifications, Second
Edition. Addison-Wesley Professional, 2000.

[7] G. Bastide, A. Seriai, and M. Oussalah. Adapting
software components by structure fragmentation. In
Proc. of ACM Symp. on Applied Computing, 2006.

[8] G. Biegel and V. Cahill. A framework for developing
mobile, context-aware applications. In Second IEEE
Int. Conf. on Pervasive Computing and
Communications (PerCom’04), page 361, 2004.

[9] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive
and dynamic software composition with sharing. In
Workshop on Component-Oriented Programming
(WCOP) at ECOOP’02, June 2002.

[10] N. Bussière, D. Cheung-Foo-Wo, V. Hourdin,
S. Lavirotte, M. Riveill, and J.-Y. Tigli. Optimized
contextual discovery of web services for devices. In
IEEE Int. Workshop on Context Modeling and
Management for Smart Environments, Oct. 2007.

[11] A. Charfi, B. Schmeling, A. Heizenreder, and
M. Mezini. Reliable, Secure, and Transacted Web
Service Compositions with AO4BPEL. In Proc. of the
4th IEEE Euro. Conf. on Web Services, Dec. 2006.

[12] D. Cheung-Foo-Wo, J.-Y. Tigli, S. Lavirotte, and
M. Riveill. Self-adaptation of event-driven
component-oriented Middleware using Aspects of
Assembly. In 5th Int. Workshop on Middleware for
Pervasive and Ad-Hoc Computing (MPAC),
California, USA, Nov. 2007.

[13] A. Greenfield. Everyware: the dawning age of
ubiquitous computing. New Riders, pages 12–12, 2006.

[14] ITU Internet Reports 2005. The internet of things.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proc. European

Conf. on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, 1997.

[16] K. Lyytinen and Y. Yoo. Issues and challenges in
ubiquitous computing. Communications of the ACM,
45(12):62–65, 2002.

[17] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and
R. Metz. Reference model for service oriented
architecture 1.0. Technical Report wd-soa-rm-cd1,
OASIS, Feb. 2006.

[18] J. Magee, N. Dulay, S. Eisenbach, , and J. Kramer.
Specifying distributed software architectures. In 5th
European Software Engineering Conf. (ESEC’95),
pages 137–153, Sept. 1995.

[19] C. Mascolo, S. Hailes, L. Lymberopoulos, G. P. Picco,
P. Costa, G. Blair, P. Okanda, T. Sivaharan,
W. Fritsche, M. Karl, M. A. Rnai, K. Fodor, and
A. Boulis. Survey of middleware for networked
embedded systems. Technical Report D5.1, 2005.

[20] A. Messer, H. Song, D. Cheng, and S. Gibbs. A
classification of pervasive system software. In Common
Models and Patterns for Pervasive Computing
Workshop, at the 5th Int. Conf. on Pervasive
Computing (Pervasive 2007), May 2007.

[21] E. Niemela and J. Latvakoski. Survey of requirements
and solutions for ubiquitous software. In MUM ’04:
Proc. of the 3rd Int. Conf. on Mobile and ubiquitous
multimedia, pages 71–78, New York, USA, 2004. ACM.

[22] N. Pessemier, L. Seinturier, L. Duchien, and
T. Coupaye. A model for developing component-based
and aspect-oriented systems. In Springer, editor, 5th
Int. Symp. on Software Composition, volume 4089 of
LNCS, pages 259–274, Mar. 2006.

[23] M. Roman, C. K. Hess, R. Cerqueira,
A. Ranganathan, R. H. Campbell, and K. Nahrstedt.
Gaia: A middleware infrastructure to enable active
spaces. In IEEE Pervasive Computing, pages 74–83,
Dec. 2002.

[24] M. Roman and N. Islam, editors. Dynamically
Programmable and Reconfigurable Middleware
Services, volume 3231 of LNCS. Springer, 2004.

[25] J. Schlimmer and J. Thelin. Devices Profile for Web
Services. schemas.xmlsoap.org/ws/2006/02/devprof,
Feb. 2006.

[26] J. P. Sousa and D. Garlan. Aura: an architectural
framework for user mobility in ubiquitous computing
environments. 3rd Working IEEE/IFIP Conf. on
Software Architecture, 2002.

[27] SUN Microsystems. JavaBeans 1.01 specification.
http://java.sun.com/products/javabeans/, 1997.

[28] M. Vallée, F. Ramparany, and L. Vercouter. Flexible
composition of smart device services. In The 2005 Int.
Conf. on Pervasive Systems and Computing(PSC-05),
June 2005.

[29] M. Weiser. The computer for the twenty-first century.
Scientific American, 265(3):94–104, Sept. 1991.

[30] Wireless World Research Forum. Book of visions.
http://www.wireless-world-research.org/.

[31] S. Zachariadis, C. Mascolo, and W. Emmerich. The
SATIN component system - a meta model for
engineering adaptable mobile systems. IEEE Trans.
on Softw. Eng., 32(11):910–927, Nov. 2006.

