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Abstract To unleash the full potential of IoT, it is critical to facilitate the cre-
ation and operation of trustworthy Smart IoT Systems (SIS). Software develop-
ment and delivery of SIS would greatly benefit from DevOps as devices and IoT
services requirements for reliability, quality, security and safety are paramount.
However, DevOps practices are far from widely adopted in the IoT, in particular,
due to a lack of key enabling tools. In last year paper at DevOps’18, we presen-
ted the ENACT research roadmap that identified the critical challenges to enable
DevOps in the realm of trustworthy SIS. In this paper, we present the ENACT
DevOps Framework as our current realization of these methods and tools.
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1 Introduction

To fully realize the potential of the IoT, it is important to facilitate the creation and
operation of the next generation IoT systems that we denote as Smart IoT Systems
(SIS). SIS typically need to perform distributed processing and coordinated behaviour
across IoT, edge and cloud infrastructures, manage the closed loop from sensing to
actuation, and cope with vast heterogeneity, scalability and dynamicity of IoT systems
and their environments.



Major challenges are to improve the efficiency and the collaboration between oper-
ation and development teams for the rapid and agile design and evolution of the system.
To address these challenges, the ENACT H2020 project [7] embraces the DevOps ap-
proach and principles. DevOps [10] has recently emerged as a software development
practice that encourages developers to continuously patch, update, or bring new fea-
tures to the system under operation without sacrificing quality. Software development
and delivery of SIS would greatly benefit from DevOps as devices and IoT services
requirements for reliability, quality, security and safety are paramount. However, even
if DevOps is not bound to any application domain, many challenges appear when the
IoT intersects with DevOps. As a result, DevOps practices are far from widely adopted
in the IoT, in particular, due to a lack of key enabling tools [19,13].

Current DevOps solutions typically lack mechanisms for continuous quality assur-
ance [13], e.g., mechanisms to ensure end-to-end security and privacy as well as mech-
anisms able to take into consideration open context and actuation conflicts (e.g., allow-
ing continuous testing of IoT systems within emulated and simulated infrastructures). It
also remains challenging to perform continuous deployment and evolution of IoT sys-
tems across IoT, edge, and cloud spaces [13]. Our recent systematic studies have found
a lack of addressing trustworthiness aspects in the current IoT deployment and orches-
tration approaches [15,14]. These are key features to provide DevOps for trustworthy
SIS.

To address this issue, ENACT will deliver a set of tools for the DevOps of trust-
worthy SIS. In our former paper [7], we presented the ENACT research roadmap that
identified the critical challenges to enable DevOps in the realm of trustworthy SIS.
We also introduced the related contribution of the ENACT project and an evolution of
the DevOps methods and tools to address these challenges. In this paper, we aim at
presenting the ENACT DevOps Framework as our current realization of these methods
and tools.

The remainder of this paper is organized as follows. Section 2 presents the overall
architecture of the ENACT DevOps Framework, including its architecture and details
about the different tools that form this framework. Section 3 exemplifies how they can
be used all together to develop and operate trustworthy SIS. Section 4 details how trust-
worthiness is used as a driver for feedback between Ops and Dev activities. Section 5
summarizes the list of models shared between all the ENACT tools. Finally, Section 6
presents related works and Section 7 concludes.

2 The ENACT Approach

The ENACT DevOps approach is to evolve DevOps methods and techniques to support
the development and operation of smart IoT systems, which (i) are distributed, (ii) in-
volve sensors and actuators and (iii) need to be trustworthy (i.e., trustworthiness refers
to the preservation of security, privacy, reliability, resilience, and safety [9]).

2.1 Conceptual Architecture of the ENACT DevOps Framework

ENACT provides an integrated DevOps Framework composed of a set of loosely coupled
tools. Still, these tools can be seamlessly combined, and they can easily integrate with



existing IoT platform services and enablers. Figure 1 shows the set of tools that forms
the ENACT DevOps Framework as well as the relationships between these tools. This
conceptual architecture consists of five layers, where each layer denotes a particular
level of abstraction, complexity and dynamic.
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Figure 1. The ENACT Overall Architecture

From the most abstract to the most concrete (i.e., from the farthest to the closest to
the running system), the layers are described as follows:

1. Evolution & Adaptation Improvement Layer: This layer provides the mechan-
isms to continuously improve and manage the development and operation processes
of trustworthy SIS. On the one hand, the Risk Management tool helps organizations
to analyze the architecture of their Smart IoT Systems and detecting potential vul-
nerabilities and the associated risk (in particular related to security and privacy
aspects) and propose related mitigation actions. Risk management tools typically
relates to the Plan stage in the DevOps process. However, in ENACT we will extend
the scope to provide continuous risk management. On the other hand, the Online
Learning tool focuses on improving the behaviour of the adaptation engine that will
support the operation of trustworthy SIS. This tool typically relates to the Operate
stage of the DevOps process. In general, the improvement layer provides feedback
and knowledge to all the other DevOps stages with the aim to improve the develop-
ment and operation of trustworthy SIS. Thus, in this architecture, information from
this layer are provided to the evolution and adaptation management layer with the
aim to improve it.

2. Evolution & Adaptation Management Layer: This layer first embeds a set of ed-
itors to specify the behaviours as well as the orchestration and deployment of SIS



across IoT, Edge and Cloud infrastructure. These editors integrate with mechan-
isms to maximize and control the trustworthiness of the system. All together, these
components cover activities in both the Dev and Ops parts of a DevOps process and
in particular to the code, build and operate stages. The activities performed at this
layer are strongly affected by the inputs from the improvement layer.

3. Evolution & Adaptation Enactment Layer: This layer bridges the gap between
development and operation as its goal is to enact the deployment and adaptation ac-
tions decided at the Evolution & Adaptation Management Layer. The mechanisms
of this layer monitor and manage the deployment of the running system.

4. Environment Layer: This layer consists of the running system together with the
environment and infrastructure in which it executes. This includes both production
and testing environments.

5. Monitoring and Analytics Layer: This layer is orthogonal and feeds the other
four. The tools at this layer are supporting the monitoring stage of the DevOps
process and typically aim at providing feedback from Ops to Dev. More precisely,
this layer provides mechanisms to monitor the status of the system and of its en-
vironment. This includes mechanisms to monitor the security and privacy of a SIS.
In addition, it performs analytic tasks providing: (i) high level notifications with
insights on ongoing security issues, (ii) diagnostics and recommendations on sys-
tem’s failures, and (iii) feedback on the behavioural drift of SIS (i.e., system is
functioning but not delivering the expected behaviour).

2.2 Evolution & Adaptation Improvement Layer

The improvement layer consists of two tools: (i) the Risk Management tool and (ii) the
Online Learning tool.

Risk Management: The Risk Management tool provides concepts and tools for the
agile, context-aware, and risk-driven decision support and mechanisms for application
developers and operators to support the continuous delivery of trustworthy SIS. The
approach is an evolution of the MUSA Risks management tool [17] that focused secur-
ity for cloud-based systems. The extension comes with the ability to define IoT-related
risks, both by selecting predefined risks stored in a catalogue or allowing users to define
them. It also allows for the assessment of such risks. The Risk Management tool integ-
rates with the DevOps cycle to continuously monitor the risk mitigation status though
evidences collectors and, thus, enable continuous risk management. The Risk Manage-
ment tool consumes as input a catalogue of risk treatments, catalogues of security and
privacy controls, and an orchestration and deployment model. It produces as output a
risk management plan, which includes a set of risk treatment suggestions, and continu-
ous information about the status of the implementation of the different treatments, as
well as the effectiveness of these treatments when this information is available.

Online Learning: The Online Learning tool supports a system in the way it adapts it-
self. Adaptation helps a system to maintain its quality requirements in the presence of
environment changes. To develop an adaptive system, developers need an intricate un-
derstanding of the system implementation and its environment, and how adaptation im-
pacts system quality. However, due to design-time uncertainty, anticipating all potential



environment changes at design-time is in most cases infeasible. Online learning facilit-
ates addressing design-time uncertainty. By observing the system and its environment
at run-time, online learning can automatically refine a system’s adaptation capabilit-
ies. One of the most widely used online learning techniques is reinforcement learning,
which can learn the effectiveness of adaptation actions through interactions with the
system’s environment. All existing reinforcement learning approaches use value-based
reinforcement learning, which are not able to cope with large, continuous environment
states (cf. Section 6). To address this issue we instead realize our Online Learning tool,
we employ policy-based reinforcement learning, a fundamentally different reinforce-
ment learning technique. In a further state the tool should be able to take behavioural
drift information as an input to trigger new learning phases. At this state the online
learning tool consumes information about the current environment state of the system
to adapt, and attributes of the system that can be used to compute a reward to evalu-
ate the current parameter setting. It then produces a new parameter setting which can
be applied to the system, so that a new time-step in the underlying sequential decision
problem is reached.

2.3 Evolution & Adaptation Management Layer

The evolution and adaptation management layer is composed of two main groups of
tools: (i) the editors and (ii) the trustworthiness controls.

The editors are meant to support DevOps engineers in specifying the behaviour and
deployment of SIS. This includes:

ThingML: ThingML [12] is an open source IoT framework that includes a language
and a set of generators to support the modelling of system behaviours and their auto-
matic derivation across heterogeneous and distributed devices at the IoT and edge end.
The ThingML code generation framework has been used to generate code in different
languages, targeting around 10 different target platforms (ranging from tiny 8-bit mi-
crocontrollers to servers) and 10 different communication protocols. ThingML models
can be platform specific, meaning that they can only be used to generate code for a
specific platform (for instance to exploit some specificities of the platform); or they can
be platform independent, meaning that they can be used to generate code in different
languages. In ENACT, ThingML can be used to specify the behaviour of software com-
ponents that will be part of a SIS. As part of ENACT, ThingML is extended with mech-
anisms to monitor and debug the execution flow of a ThingML program. Following
the ThingML philosophy, the proposed monitoring mechanism is platform independ-
ent, meaning that the concepts monitored at the target program execution are refined as
ThingML concepts. The ThingML run-time consumes as input ThingML programs and
produces as output an implementation of an application component.

GeneSIS: GeneSIS [6] is a tool to support the continuous orchestration and deployment
of SIS, allowing decentralized processing across heterogeneous IoT, edge, and cloud
infrastructures. GeneSIS includes: (i) a domain-specific modelling language to model
the orchestration and deployment of SIS; and (ii) an execution engine that supports the
orchestration of IoT, edge, and cloud services as well as their automatic deployment



across IoT, edge, and cloud infrastructure resources. GeneSIS is being built as part
of ENACT and inspires from CloudML [4], a tool for the deployment of multi-cloud
systems. GeneSIS will also embed the necessary concepts (both in the language and in
the execution engine) to support the deployment of security and privacy controls [5] and
monitoring mechanisms as well as for the deployment of actuation conflict managers.
Finally, GeneSIS will offer specific mechanisms to support the deployment of ThingML
programs. The GeneSIS execution engine consumes as inputs deployable artefacts (i.e.,
implementation of application components that need to be allocated on host services
and infrastructure) and a GeneSIS deployment model. It produces as output a GeneSIS
deployment model with run-time information (e.g., IP addresses), notifications about
the status of a deployed system, and actually deploys the SIS.

Actuation Conflict Manager: The Actuation Conflict Manager tool supports the iden-
tification, analysis and resolution of actuation conflicts. The identification of actuation
conflicts is done during development and thus relies on the overall architecture of the
SIS. It consists in identifying concurrent accesses to the same actuator or actuators in-
teracting through a shared physical environment. The analysis of the conflicts consists
in understanding the flow of data coming to the actuators. This includes understand-
ing where the data originated from as well as the path it followed (i.e., through which
components) before reaching the actuator. The conflict resolution will provide DevOps
engineers with the ability to either (i) select an off-the-shelf actuation conflict manager
or (ii) design their own actuation conflict manager with safety requirements. Finally,
the actuation conflict manager tool will support the integration of the actuation conflict
manager into the SIS. The Actuation Conflict Manager consumes, as input, an orches-
tration and deployment model and produces and provides, as output, an actuation con-
flict manager together with a new orchestration and deployment model (that includes
the actuation conflict manager).

The trustworthiness control tools are meant to ensure the trustworthiness of a SIS.
This includes:

Diversifier: At development time, the Diversifier consumes as input a GeneSIS de-
ployment model or a ThingML behaviour specification and produces as output multiple
diverse specifications. At the current stage, the architecture diversification is focused on
diversifying the composition of reusable blocks, and the code (behaviour) diversifier is
focused on the diversification of communication protocols. At run-time, the diversifier
aims at managing a large and dynamic number of sub-systems with emerging and in-
jected diversity, in order to achieve the robustness and resilience of the entire system.
In short, it monitors and records the diversity among subsystems, managing the life-
cycles of these subsystems, and controls the upgrading, deployment and modification
of software components on these subsystems.

Security and Privacy controls: Security and Privacy control tool is a set of multiple
mechanisms that, in a complementary way, can provide security and/or privacy to dif-
ferent elements of a SIS. It will provide security controls embedded in the IoT platform
related to integrity, non-repudiation and access control. Moreover, the communications



sent through the IoT platform can be stopped based on specific pre-defined rules re-
lated to the behaviour of the SIS. The tool will be further enhanced with a Security and
Privacy Control Manager that can enable, disable and configure the controls provided
within the Security and Privacy control tool.

Context-Aware Access Control: The Context-Aware Access Control tool is a solution
for dynamic authorization based on context for both IT and OT (operational technolo-
gies) domains. In particular, this tool provides Context-aware risk and trust-based dy-
namic authorization mechanisms ensuring (i) that an authenticated IoT node accesses
only what it is authorized to and (ii) that an IoT node can only be accessed by author-
ized software components. Access authorizations will be adapted according to contex-
tual information. Context may be for instance the date and time an access authorization
is requested, the geolocation of this request, or it can be dynamic attributes coming
from other external sources (sensors, other applications, etc.). The Context-Aware Ac-
cess Control tool consumes as inputs rules for contextual adaptation and access control
policies.

2.4 Evolution & Adaptation Enactment Layer

The adaptation enactment layer basically consists of the GeneSIS execution environ-
ment. From a deployment model specified using the GENESIS Modelling language,
the GENESIS execution environment is responsible for: (i) deploying the software com-
ponents, (ii) ensuring communication between them, (iii) provisioning cloud resources,
and (iv) monitoring the status of the deployment. The GENESIS deployment engine
implements the Models@Run-time pattern [2] to support the dynamic adaptation of a
deployment with minimal impact on the running system. It provides the other tools with
interface to dynamically adapt the orchestration and deployment of a SIS.

2.5 System Layer

In addition to the running system, this layer encompasses the test and simulation tool.

Test and simulation: Test and simulation tool provides concepts and tools for running
application scenarios against the set of programmed circumstances. The tool-set is aim-
ing to provide a baseline for performance, resilience testing as well as risk management
testing. It does replicate the behaviour of previously observed devices and is able to
play back the sensors data against the programmed scenarios. The tool consumes the
treatments from the risk management group and produces the report for the outputs of
the scenarios.

2.6 Monitoring & Analytics Layer

The monitoring and analytics layer is composed of three tools: (i) the Security and
Privacy Monitoring tool, (ii) the Root Cause Analysis tool, and (iii) the Behavioural
Drift Analysis tool.



Security and Privacy Monitoring: The Security and Privacy Monitoring tool allows the
IoT application operator to monitor the security and privacy status of the IoT system
at different layers. The tool will capture and analyse data from multiple and heterogen-
eous sources such as raw data from network, system and application layers, as well as
events from security monitoring components such as intrusion prevention and intrusion
detection systems (IPS/IDS). All the data will be processed and displayed in a common
dashboard, which includes processed information in the form of alerts, statistics and
graphs. This information will be further enhanced with a standardized classification of
security events (such as MITRE ATT&CK) and candidate security controls that can
mitigate the detected potential threat.

Root Cause Analysis: The main objective of the Root Cause Analysis (RCA) module
is to provide the ENACT platform with a reliable tool capable of detecting the origin
of failures on the system. This engine relies on both instrumentation of the software
(logs generation or specific instrumentation software) and monitoring of the devices
and network. The RCA tool will use these data as the principal input to generate a
graph of the system, which will be used to identify the scope of the detected anomalies.
Later, the graph that represents the potential impact of the anomalies will be matched
against a previously-assessed anomalies database, whose Root Cause is already known.
This process will be further enhanced with feedback from the system administrator, who
will be able to decide which is the best match for the anomaly detected. The feedback
received from the user (the correct and erroneous matches) will be used by the RCA
module to adjust its calculation and learn from the context of the system.

Behavioural Drift Analysis: The objective of the Behavioural Drift Analysis tool is to
detect whenever a SIS derives (during operation) from its expected behaviour (at devel-
opment time) and to provide the DevOps engineer with comprehensible representations
and models of the drifting behaviour. The drift is measured via a set of probes and
sensors that monitors the behaviour of the SIS and by comparing what is observed to
the behaviour modelled during development. The DevOps engineer has thus access to
a dashboard with representations that aim at facilitating drifts diagnostic by displaying
metrics and drifting behaviour models. The Behavioural Drift Analysis tool consumes,
as input, a behavioural model of the SIS as well as implementations of the monitoring
probes. It produces, as output, measurements describing behavioural drifts as well as a
behavioural model updated based on run-time observations.

3 An Example of the ENACT Workflow

Figure 2 depicts an example of workflow between the ENACT development tools.
First, a DevOps engineer can use GeneSIS (aka., the orchestration and deployment

tool) to specify the overall architecture of a SIS ( 1©). This model can thus serve as
input for the Risk Management tool, which will help conducting a risk analysis and
assessment and may result in a set of mitigation actions, for instance advocating the
use of a specific set of security mechanisms ( 2©). As a result, the DevOps engineer
may update the model describing the architecture of the SIS before its refinement into a



Figure 2. The ENACT Development Toolkit

proper deployment model. The DevOps engineer might also use ThingML to implement
some of the software components that should be deployed as part of the SIS ( 3©). At
this stage, the Actuation Conflict Manager enabler can be used to identify actuation
conflicts – e.g., concurrent accesses to an actuator ( 4©). This enabler will support the
DevOps engineer in either selecting or designing an actuation conflict manager to be
deployed as part of the SIS (typically as a proxy managing the accesses to the actuator).
Finally, the SIS can be simulated and tested, in particular against security threats and
scalability issues ( 5©) before being sent to GeneSIS for deployment.

As depicted in Figure 3, before deployment, the DevOps engineer may use the Di-
versifier to increase the overall robustness of the system ( 6©). This tool can generate
different variants, but still functionally equivalent, of the components of the SIS (e.g.,
different versions of the software components are deployed making the overall SIS more
robust to security and privacy attacks). After diversification, the SIS can be deployed
using GeneSIS. Once the SIS in operation, a set of ENACT tools are responsible for
its run-time monitoring and control. Monitoring tools are depicted on the right part of
Figure 3 ( 7©). First, the Behavioural Drift Analysis tool can be used to understand to
which extent a SIS behaves (in the real world) as expected (during development). This
is important as a SIS typically operates in the midst of the unpredictable physical world
and thus all the situations it may face at run-time may not have been fully understood
or anticipated during development. Second, the Security and Privacy monitoring tool
can be used to identify security and privacy breaches. Third, in case of failure, the Root
Cause Analysis tool provides DevOps teams with insights on the origin of that failure.
Control tools are depicted on the left part of Figure 3. First, the Context-aware Access
Control tool can be used to manage accesses from services to sensors and actuators and
the other way around ( 8©). Accesses can be granted or removed based on context in-
formation. Finally, the Online Learning enabler uses reinforcement learning techniques
to enhance the adaptation logic embedded into a SIS ( 9©).



Figure 3. The ENACT Operation Toolkit

4 Trustworthiness as a Driver for Feedback Between Ops and Dev

One of the core values of DevOps is to improve synergies and communications between
development and operation activities. When software is in production it often produces
a plethora of data that ranges from logs to high level indicators (e.g., performance in-
dicators, context monitoring). All these data gathered at run-time can serve as valuable
feedback [3] from operation to development and, in particular, it can serve to evolve
and improve the SIS by triggering a new development cycle. Some of the challenges
are thus to properly integrate development and operation tools and to seamlessly integ-
rate feedbacks from run-time into development tools. In this section, we illustrate how
we address this challenge in the project.

In the context of ENACT, one of the main drivers for triggering a new development
cycle of a SIS on the basis of observations from operation is to improve its trustwor-
thiness, and in particular its security, privacy, resilience, reliability and safety. In the
following (see Figure 4) we illustrate how security and privacy run-time information
can be used to continuously assess risk and can, in turn, lead to an evolution of a SIS.

First, a DevOps engineer can use GeneSIS (aka., the orchestration and deployment
tool) to specify the overall architecture of a SIS. The resulting deployment model can
be sent to the Risk Management enabler. The latter is thus used to perform a risk as-
sessment that will result in a set of risk treatment suggestions. A risk treatment can
be a procedure to follow in order to mitigate a risk or simply a recommendation to
use a specific software solution or mechanism (e.g., a security control solution such
as the Context-Aware Access Control). It is worth noting that a procedure can also in-



Figure 4. Continuous Risk Management

clude a recommendation for using a specific software solution or mechanism. These
recommendations are typically linked to concrete implementations of the solution or
mechanisms. In particular, it can leverage a generic security and privacy controls cata-
logue that includes state of the art security and privacy solutions or the ENACT security
and privacy controls catalogue (i.e., the controls implemented in ENACT). It is worth
noting that by security and privacy controls we not only refer to mechanisms to im-
plement security or privacy measures but also to mechanisms to monitor security and
privacy. The Risk Management enabler embeds a catalogue of risk treatments and can
be used to specify and add new ones into the catalogue. From the risk treatment sugges-
tions, the DevOps engineer may decide to evolve its deployment model specifying that
specific security and privacy controls (whose implementation is indicated in the sug-
gestion and depicted in Figure 4 as the green icons) should be deployed together with
the SIS. After deployment, GeneSIS monitors the status of the deployment whilst the
Security and Privacy controls enablers gather security and privacy data from the probes
deployed together with the systems. Both tools send some of the gathered metrics to the
Risk Management enablers. These metrics are associated to the risk models and used to
continuously assess risk.

In the following (see Figure 5), we illustrate how run-time information from the
root cause analysis and behavioural drift analysis enablers can be used to improve the
resilience, reliability and safety of a SIS.

The Behavioural drift analysis tool aims at observing the actual behaviour of a SIS
at run-time and at comparing it with the behaviour that was expected at development
time. One result of the comparison is a value called: behavioural drift metric. A behavi-
oural drift may result from a problem in the conception of the SIS, an indirect actuation
conflict (e.g., applications are properly design but their actions on the physical environ-
ment are somehow conflicting) or an unexpected reaction of the surrounding physical
environment. Because it is difficult for a DevOps engineer to understand and take ac-



Figure 5. Continuous Improvement of Resilience, Reliability, and Safety

tions simply on the basis of a behavioural drift metric, the tool performs an analysis of
this drift, which consists in comparing the model of the expected system’s behaviour
and the observed one on the basis of what is actually happening at run-time (e.g., the
behaviour model is no more deterministic, some probabilities of transitions between
states can increase from zero and others can decrease from one). In case a behavioural
drift is observed, the tool will provide the DevOps engineer with the analysis, the latter
can in turn adapt the SIS via GeneSIS.

The Root cause analysis tool will observe the execution of the system and, in case
of failures, report on its origin. Such report will be provided to the DevOps engineer,
who can in turn adapt the SIS via GeneSIS or perform a new risk assessment.

5 Shared Models and Artefacts

The ENACT Framework tools manipulate and exchange different types of models and
software artefacts as illustrated in Figure 6. Models are represented as rectangles whilst
software artefacts (i.e., binaries, scripts, etc. which are generated from or are part of a
tool, and used or managed by another) are depicted by circles. A model is embedded in
a tool when it is directly used in the internal of the tool.

It is worth noting that the GeneSIS and ThingML models are the most reused
amongst the tools. This is because they are the key models specifying the architec-
ture and behavior of a SIS whilst the other are mainly used to manage trustworthiness
aspects of the SIS. In the following we shortly describe each model:

• GeneSIS deployment Model: is written in a domain-specific modelling language
to specify deployment model – i.e., the orchestration and deployment of SIS across
the IoT, edge, and cloud spaces.
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Figure 6. Models Manipulated and Exchanged in the ENACT Framework

• ThingML Model: is written in a domain specific modelling language to specify
the behavior of distributed software components.

• Workflow and Interaction Model for Actuation Conflict Model: describes the
interactions between the software components that form a SIS and their relation-
ship with actuators, thus, supporting the identification of both direct and indirect
actuation conflict.

• Risk and Treatment Model: describes risk and treatment suggestions.
• ACM Strategy: takes the form of a set of extended ECA rules describing the be-

havior of a custom actuation conflict manager.
• Context and Behavioural Drift: can be used to describe the SIS operational con-

text and to describe its observed behavior (compared to the expected one).
• Access Control Policy: is a set of rules that define whether a user or device must

be permitted or denied accessing to a resource.
• Context Data for Access Control: provides contextual data on a user and his

devices. These data are dynamic attributes and come from other external sources.
• Diversity Control Model: a model maintained at run-time that reflects the status

in term of deployment, software version and health of a fleet of IoT systems or
sub-systems.

• State and Action Space: for the online learning tool, the state space represents
different environment situations, while the action space represents the different ac-
tions the online learning tool may execute to improve the adaptation logic of the
Smart IoT system.

• Anomalies Pattern: is used to describe a set of patterns, which will be the baselines
for the RCA enabler to check the existence of anomalies and maps them to their
Root Cause.

• RCA System Graph: is a snapshot of the current status (e.g., network activity,
system logs, detected anomalies) of the monitored system.

• Security and Privacy Control Status: provides information about the status of
the security and privacy mechanisms used in the SIS. It is used to understand the
current status of the risk but also the progression of the treatment.



In the following we shortly describes each software artefact:

• Security and Privacy Monitoring Probes: are deployed together with the SIS
with the aim to monitor the status of specific security and privacy aspects. There
are probes at the network, application, and system levels.

• Root Cause Analysis Probes: retrieve information from the logs generated by the
devices on the IoT System, but they will also be able to interact with hardware-
based probes (such as the MMT-IoT Sniffer) and software-based solutions (such as
Snort and Suricata).

• Actuation Conflict Managers: are deployed together with the SIS and are re-
sponsible for managing the accesses to conflicting actuators (direct or indirect).
All accesses to the actuators should go via the actuation conflict manager. Actu-
ation conflict managers are either provided off-the-shelf or can be designed for a
specific type of conflict.

• Security and Privacy Controls: are implementations of security and privacy mech-
anisms to be deployed together with the SIS.

• Context Monitoring Probes: are monitoring the context of a SIS. They are de-
ployed together with the SIS and are, in particular, used by the behavioral drift
analyzers.

• Device Data Streams: are records of devices outputs and inputs used by the test
and simulation tool to replay devices behavior.

• Behavioral Drift Analyzers: are software components generated by the Behavi-
oral drift analysis tool. They are responsible for analysing a specific behavior of a
SIS. Multiple Behavioral Drift Analyzers can be deployed together with the SIS.

6 Related Work

For some years now, multiple tools and solutions have emerged to support the DevOps
of software systems and in particular to automate their testing, build, deployment and
monitoring. However, to the best of our knowledge, there is no DevOps support tailored
for smart IoT systems today [19,13]. According to [19] a key reason is: “the extremely
dynamic nature of IoT systems poses additional challenges, for instance, continuous
debugging and testing of IoT systems can be very challenging because of the large
number of devices, dynamic topologies, unreliable connectivity, and heterogeneous and
sometimes invisible nature of the devices”. In the following we discuss related work for
both the development and operation of SIS.

Continuous development of SIS: The survey in [14] illustrates a lack of approaches
and tools specifically designed for supporting the continuous deployment of software
systems over IoT, edge, and cloud infrastructure. For example, several solutions are
available on the market for the deployment of cloud-based systems such as CloudMF
[4], OpenTOSCA [18], Cloudify9, and Brooklyn10. Those are tailored to provision and

9 http://cloudify.co/
10 https://brooklyn.apache.org



manage virtual machines or PaaS solutions. In addition, similar tools focus on the man-
agement and orchestration of containers, e.g., Docker Compose11, Kubernetes12. Op-
posed to hypervisor virtual machines, containers such as Docker containers leverage
lightweight virtualization technology, which executes directly on the operating system
of the host. As a result, Docker shares and exploits a lot of the resources offered by
the operating system thus reducing containers’ footprint. Thanks to these characterist-
ics, container technologies are not only relevant for cloud infrastructure but can also
be used on edge devices. On the other side, few tools such as Resin.io and ioFog are
specifically designed for the IoT. In particular, Resin.io provides mechanisms for (i) the
automated deployment of code on devices, (ii) the management of a fleet of devices,
and (iii) the monitoring of the status of these devices. Resin.io supports the following
continuous deployment process. Once the code for the software component to be de-
ployed is pushed to the Git server of the Resin.io cloud, it is built in an environment
that matches the targeted hosting device(s) (e.g., ARMv6 for a Raspberry Pi) and a
Docker image is created before being deployed on the target hosting device(s). How-
ever, Resin.io offers limited support for the deployment and management of software
components on tiny devices that cannot host containers. The same applies to Microsoft
IoT Hub13.

In addition, the survey in [14] also highlights that very few primary IoT deployment
studies address (i) security and privacy aspects, and (ii) the management of actuators
(and actuation conflict). Even if no DevOps solutions for IoT systems embed specific
mechanisms for the management of actuation conflicts, the core of this challenge relates
to the generic problem of managing features interactions. Indeed, when a global func-
tionality is obtained from a set of shared features, there is a risk for unintended and
undesirable interactions between the features. However, because current work on this
topic do not focus on the IoT application domain, they encompass the following weak-
nesses. They give a low degree of importance to (i) the modelling of the physical envir-
onment as part of the conflicts identification process, and (ii) to reusability, scalability
and dynamicity as part of the resolution process.

Similarly, there is a lack of risk analysis methodologies that are adapted to agile
contexts but still achieve the level of analysis and detail provided by traditional risk
assessment and mitigation techniques, in particular related to NFRs. Fitzgerald et al [8]
illustrate how Lean Thinking [20] can be applied to continuous software engineering.
Authors even go beyond software development and consider issues such as continuous
use, continuous trust, etc., coining the term “Continuous” (Continuous Star). However,
they do not explicitly tackle challenges related to continuous risk management.

Continuous operation of SIS: By observing the system and its environment at run-
time, online learning can automatically refine a system’s adaptation capabilities. One
of the most widely used online learning techniques is reinforcement learning, which
can learn the effectiveness of adaptation actions through interactions with the system’s

11 https://docs.docker.com/compose/
12 https://kubernetes.io
13 https://azure.microsoft.com/fr-fr/services/iot-hub/



environment. However, so far, all existing reinforcement learning approaches use value-
based reinforcement learning and thus face two key limitations. First, they face the ex-
ploration/exploitation dilemma, which requires developers to fine-tune the amount of
exploration to ensure convergence of the learning process. Second, most approaches
store the learned knowledge in a lookup table, which requires developers to manually
quantify environment states to facilitate scalability. To realize the Inline Learning too,
we thus automate both these manual activities by employing policy-based reinforce-
ment learning, a fundamentally different reinforcement learning technique. Thereby,
our Online Learning tool is able to cope with large, continuous environment states. In a
further state the tool should be able to take behavioural drift information as an input to
trigger new learning phases.

Online learning is meant to be performed at run-time, considering observations
about the physical environment, the state of the system, and so the context. Context-
awareness is key to collect sensor data, to understand it and to provide valuable inform-
ation to reasoning engines. Since the first definition of context [1] a lot of middleware
and software frameworks have emerged. Already in 2014, [16] finds 50 context-aware
solutions in the scientific literature and today lot of well-known approaches are avail-
able [11] to collect sensors and probes data leveraged for modelling various contextual
concerns (location, situation, social environment, etc.). However, SIS pose new chal-
lenges. Indeed, as far as physical things are concerned, no guaranty can be made on their
availability on the long run. The underlying infrastructure of SIS can thus be volatile.
Moreover, the purpose of some of these systems can only be achieved from interac-
tions with the physical environment through actuators (e.g., Heating, Ventilation and
Air-Conditioning controllers). In this context, these systems can possibly be affected
by unanticipated physical processes over which they have no control, leading their be-
haviour to potentially drift over time in the best case or to malfunction in the worst case.
As said, many platforms include context awareness and monitoring mechanisms (e.g.,
SOFIA214, FIWARE15 with the Orion Context Broker for instance). However, these
platforms do not consider behavioural drift monitoring as an awareness criterion. This
is what is addressed by our behavioral drift analysis tool.

7 Conclusion

We presented the ENACT DevOps Framework which offers a set of novel solutions
to address challenges related to the development, operation, and quality assurance of
trustworthy smart IoT systems that need to be distributed across IoT, edge and cloud
infrastructures and involve both sensors and actuators. These enablers are under de-
velopment as part of the ENACT H2020 project and will be delivered as open source
artefacts.

Acknowledgement. The research leading to these results has received funding from the
European Commission’s H2020 Programme under grant agreement numbers 780351
(ENACT).
14 https://sofia2.com
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