

Volume 50, Number 2, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received Mai 02, 2009; revised Mai , 2009

1

RELEVANT CONTEXT DISCOVERY FOR PERVASIVE SERVICES

INVOLVING USER CONTROL

Marcel CREMENE

1
, Alin DRIMUS

3
, Jean-Yves TIGLI

2
, Stephane LAVIROTTE

2
,

Gaëtan REY
2
, Michel RIVEILL

2
, Costin MIRON

1
, Mircea VAIDA

1

1
Technical University of Cluj-Napoca, Communications, {cremene, vaida}@com.utcluj.ro,miron@bel.utcluj.ro

2
University of Nice Sophia-Antipolis, Ecole Polytechnique, {tigli, lavirott, gaetan.rey, riveill}@unice.fr

3
University of Southern, SDU, Denmark,drimus@mci.sdu.dk

Abstract: Dynamic context adaptation is a central concept in Pervasive and Ubiquitous Computing. In this paper we have analyzed
the problem of context relevance and we have chosen an approach where the user is also involved also in the relevance control. The
advantage of involving the user is motivated by the fact that a completely automatic context management cannot deal with
unpredicted situations. The proposed solution was implemented on the top of WComp middleware. An easy to use interface let the
user the possibility to easily manage its context.

Key words: Ubiquitous computing, Relevant context, Context discovery, Intelligent Devices.

I. INTRODUCTION

Background and terminology. Pervasive and ubiquitous
computing domains have known a very dynamic
development in the last years, especially due to the
development of mobile technologies that need new services
in order to become more efficient and profitable.
 The majority of the research directions from these
domains are starting from the same idea: the
services/applications should adapt (dynamically) to their
context.
 The problem addressed in this paper is related to relevant
context discovery in pervasive and ubiquitous computing.
We are interested especially on the intelligent environments
(buildings) domain.
 The context concept is a well known one in the
pervasive/ubiquitous domains. In our approach, the context
C includes all the elements surrounding a user U that
interacts with a service S.
 The context is described mainly by the next aspects:

- Available (software) services that may be found
around the user, other than the services used
already by the user,

- Hardware infrastructure (devices, networks, etc.)
- User’s need, preferences, social context, etc.
- Physical context (position, time, temperature, light,

noise, etc.).

 Motivation. Theoretically, the context is composed by
all the external elements that may affect the usage of a
service S by a user U.
 If we push the things really to the limit, the context
become extremely large and even infinite, and thus
unusable.
 In practice, usually, the context is finite and established a
priori by a human expert. Here, there is another limitation

because if all is established a priori, the context cannot
evolve if the services or the user needs unpredictably change
in time.
 In order to enable the context dynamic evolution, a
context-aware system should have a context discovery
mechanism.
 By relevance of the context we understand a function
associated with each context element, that makes a
difference between these various context elements, from the
point of view of a specific user U, that is using one or more
specific services S1…Sk, at a specific moment T.
 The relevance aim is to simplify the active space and
help the user to focus on the aspects that are the most
important for him (while using a certain service).
 The relevance is partially deduced automatically from the
context state (using some predefined rules) and partially
specified by the user directly (through a control interface).

 Scenario. In order to have a better understanding about
the motivation and how the context influences a certain user
U interacting with a service S, we propose the following
scenario.
 A professor P intends to make a presentation in the class
room 1. He opens his PDA, where the presentation is stored,
and starts the presentation service. For the moment, the
service is reduced only to the presentation viewer from his
PDA.
 The viewer service tries to connect to a projector service.
The professor is located in room 1. Here, the (detected)
available services are: projector from room 1, projector from
room 2, light from room 1, light from room 2, light sensor
from room 1 and light sensor from room 2.
 The PDA viewer service will connect to the projector
service from room 1 and ignore the other services for the
moment. In this first case, the relevant context is composed
only by the projector located in the user’s room. This fact

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 2

may be deduced automatically because it does have no sense
to use a projector from another room.
 Let suppose now that, at a certain moment, the external
light becomes too intense. Now, the professor needs a new
service in order to maintain a uniform light level in the
room. In this second case, we see that it is necessary to add
to the relevant context two additional elements: the light
level given by the light sensor service and the light control
service. This fact is triggered by the professor need for a
certain level of light and it requires the user control.

 Objective. The aim of this paper is to propose a context
discovery mechanism based on the context relevance
function and show how this mechanism may be integrated
into a context-aware middleware. The user is also included
in the relevance decision process.

 Approach. In our vision, three approaches are possible
in order to determine the relevant context:

a) The relevant context is specified by the user (using
an easy interface if possible). This approach may
not be such a good solution if there are a very large
number of context elements and it is difficult to the
user to decide its zone of interest.

b) The relevant context is automatically deduced
based on some general, predefined rules. But some
of the user preferences cannot be known a priori by
the system developer and the general mechanisms
cannot deal with particular cases and with
unpredicted situations. All predefined solutions are
limited by definition.

c) The relevant context is deduced partially
automatically and partially chosen by the user. This
approach tries to combine the advantages of the
both approaches described before.

 In this paper we have chosen the third approach because
it gives the user the possibility to freely decide its zone of
interest and it is also a solution for unanticipated adaptation.

 Outline. The paper is organized as it follows: the next
section presents several context-aware platforms and
analyzes how they address the issues discussed in the
introduction section, showing their limitations.
 Section three present our proposed solution, based on a
context filtering mechanism.
 Section four presents a prototype that was implemented
in order to test our proposal and the results that we have
obtained.
 The last section contains the conclusions and the further
work.

II. RELATED WORK

In this section we will analyze some existent context-aware
platforms in order to see how the relevant context is
determined. We also discuss briefly about the context
models. The end of this section presents our conclusion
about the limitations of the existent solutions.

 GAIA [3] is middleware support for active space
environments such as smart rooms and living environments.
It essentially provides a distributed operating system where
all inputs, outputs and processing units within a room are

considered as a single computer.
 GAIA uses a component repository and centralized
approaches to events, and services discovery. Code can be
updated replacing components in the repository.
 The context is described using data collection called
predicates. Some example context predicates are:
Context(location, Chris, entering, room 3231),
Context(temperature, room 3231, is, 98 F), Context(social
relationship, Venus, sister, Serena).
 First order logic formula may be applied on these
predicates in order to deduce the action to be taken function
on the context.

 CORTEX [4] proposes a novel sentient object model to
address the emergence of a new class of application that
operate independently of human control. Infrastructure-
based and ad-hoc based wireless environments are
considered to address mobility. The middleware is highly
configurable at run-time. It reacts on events by changing the
behavior of objects.
 In order to select the relevant context, CORTEX uses
filters that provide a basic mechanism to allow objects to
express interest, or lack thereof, in events of a certain type
and zones that introduce a means of scoping or limiting the
propagation of event notifications in the system.

 Aura [5] is a context-aware middleware which can be
used to create mobile applications. It represents the user by
its aura, like a Personal Area Network (PAN), and brings the
appropriate resources from the services of the environment
to support the user’s task.
 Context changes are notified by events, and tasks can
change while context is evolving. It’s also interesting to note
that it suspends tasks which cannot be processed anymore
due to a context change, storing their state for a future
resume.
 A key context element is considered to be the user
location information and various methods may be used in
order to locate the user. Another key aspect of the context is
considered to be the time (ex. scheduled tasks). Other
context aspects are related to the user profile, personal data
(that should be also secured). Some constraints can be
expressed in task descriptions, and the middleware restricts
some of its operations.

 Oxygen [6] is an MIT project which addresses human
needs using speech and vision technologies that enable the
user to communicate with it as if the user were interacting
with another user.
 An application of this project is to define intelligent
networks with dynamic topologies, according to devices
locations. There are fixed and mobile devices with
embedded software. Code can be automatically updated
thanks to that. Network rules can be specified to allow sets
of users to use particular resources.
 The Oxygen project proposes the idea of pervasive
human-centred computing: it supports nomadic users
changing various terminals which adapt themselves to the
user needs; provide multimodal interfaces; and it is
intentional meaning that it must enable people to name
services and software objects by intent (for example, "the
nearest lamp").

 Context models. The context can be defined as the

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 3

information that surrounds and identifies a specific entity,
being software, hardware or human based.
 In [1] we can see that the two most important and
relevant elements for providing a description of the context
could be the human factors and the physical environment.
Human factors related context is structured into three
categories: information on the user (knowledge of habits,
emotional state, bio-physiological conditions, etc.), the
user’s social environment (co-location of others, social
interaction, group dynamics, etc.), and the user’s tasks
(spontaneous activity, engaged tasks, general goals, etc.).
 Likewise, context related to physical environment is
structured into three categories: location (absolute position,
relative position, co-location, etc.), infrastructure
(surrounding resources for computation, communication,
task performance, etc.), and physical conditions (noise, light,
pressure, etc.).

 Conclusions about the existent solutions. In the
technical report [7] were analyzed another several context-
aware platforms. The conclusions about their main
limitations, as well as for the platforms discussed in this
section, are discussed bellow.
 A first limitation of the existent solution is that the
majority of the context-aware platforms are not taking into
account the context dynamic discovery. A platform that
integrates intelligent devices that may appear and disappear
dynamically is WComp [2], [8] based on UPnP discovery
protocol.
 Another limitation of the existent solutions is related to
the relevant context management: the large majority are
based on the idea that the context (and also the reaction
mechanism rules) should be established a priori by the
service/system developer. But, as we have explained in the
introduction, the user intervention is absolutely necessary in
order to enable an unanticipated relevant context discovery.

III. PROPOSED SOLUTION

The solution that we describe here is a context-aware system
that allows the user to choose the relevant context elements
in order to select efficiently the most relevant services that
may be found around the user at a given moment.
 The environment that we are targeting is related to the
intelligent buildings where various devices offering services
may be found (and may disappear) spontaneously.

 After analyzing our problem, we have decided that the
following issues need to be solved:

1) Propose the architecture for our context-aware
system. In order to do that we reuse and adapt the
context discovery mechanism existent in the context-
aware WComp middleware [2], [8], which is based
on the UPnP devices/services discovery mechanisms.
However, this mechanism will give us the perceived
context, not the relevant one.

2) Propose a context model, according to the context
definition presented in the introduction. Find a
technical solution to add the necessary meta-data to
the WComp entities (devices, services, users, etc.).

3) Propose a filtering mechanism that will filter the
relevant context from the perceived context. Provide
this mechanism with an intuitive user interface that
will enable the user to indicate its needs.

4) Integrate the filtering mechanism with the WComp
platform and with the AoA mechanism (Aspect of
Assembly compositional and adaptation patterns)
and make some tests in order to show the difference
between the adaptation with and without the filtering
feature.

 Architecture. The proposed architecture, realized on the
top of WComp platform, is depicted in figure 1.

Figure 1. System architecture

This architecture includes the following parts:

- The Infrastructure is based on WComp
middleware and it manages the services that may
be used at a given moment. The service
instantiation respects the services relevance for the
user and it is controlled by the Filtering module.

- The Filtering module is responsible for selecting,
among all the available services, only the services
that are relevant for the user.

- The filtering operation takes into account the user
and the application (the new service) context. The
context is observed using some probe/sensors
components.

- The Application represents the new service, created
according to the user needs. The application is
created (weaved) according to some assemblage
patterns called AoA (Aspects of Assembly),
described in [2] and [8]. These patterns not only
describe how to create an application from basic
services but also how that application evolve if the
context changes dynamically.

Figure 2 depicts a detail about the context filter part. As we
may observe, from all the available UPnP (the underlying
protocol of WComp) devices, only the relevant ones are
instantiated in the WComp container.
 Examples of observer components are: a badge reader
that controls the doors so we can know when a person have
entered into a specific room and a temperature sensor.

 Context types. Several types of context can be defined
as it follows:

- The global context (utopia context), Cg, contains
all the entities that exists in a given place and may

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 4

go, at limit, to the entire world: an internet
connection means a possible connection to all
internet available services. This kind of context is
almost impossible to use because it is too complex
and the majority of the included entities are not
relevant for a certain service.

- The perceived context, Cp, for a given entity O, is
the context that may be perceived, or observed, by
this entity O. For instance, the professor’s PDA
detects all the Bluetooth services from a specific
range, from room 1 and room 2 but not from room
3 that is too far.

- The relevant context, Cr, for a given entity O, is a
part of the perceived context that has a specific
relevance for that entity O. In our example, we may
say that, the relevant context contains only the
services from room 1 because the user and its
terminal are located in the room 1.

Figure 2. Context filter

 Context model. Context information can be represented
in lots of ways. There are different opinions about how to
represent context, ontology, different forms of databases,
xml or other forms. Many see context highly connected to
the application or to what we consider useful.
 Keeping in mind that the simpler is the better, we tried to
imagine a context as the minimum useful information that
can be used in order to allow the context awareness.
 As context information is not yet agreed upon, having a
lot of alternatives, we propose a way to allow the user to
define the meaning of context.
 This is very important because it will keep the
application relevant to how the user imagines context. We
propose representing the context information by context
elements, grouped in a tree, each node having contextual
information attached to it. The user may add or remove
elements, or can modify the structure of this context model.
 This is a very simple representation, but yet very
effective, as important elements can be grouped, and can be
hierarchically arranged in order to reflect the real life
scenario. This is helpful if the user has not yet decided on a
full model of context, or in case the user wants to decide
later about the context model.
 The model of the context that the user can build is called
the context skeleton and it is an xml file that has the contents

the same as the tree elements defined by the user. This
context skeleton can be exchanged by different users, and
can be easy read or edited (figure 3).

 Context Information Repository. When dealing with
context information it is important to decide if we want to
have a centralized approach for the context (a database with
all the context information for all devices in the network) or
we want to have each element from the context hold it’s own
contextual information.
 This problem is highly debatable, but if we consider that
we work with relatively simple devices (most of them are
sensors) that have limited functionalities and do not possess
the resources to hold some sort of contextual information or
representation, then we may say that a more simple approach
should be taken into consideration. This approach is the
database or the centralized repository.

Figure 3. Context Builder

 In such a manner, we could build our own model of
context, and the device should not need to carry the context
description. This description is only in the repository. Of
course, devices don’t have any possibilities to store context
information at this moment, but let’s suppose they did, we
may face another problem: what if we think of the context to
reflect only location of the device or user, and somebody
else would like to view their context as only to reflect their
type (laptop, PDA, smart phone). In this case, the devices
carrying their own context information will have difficulties
providing the context that we desire and in the meantime
providing another context to the other user.
 Such a perspective would require intelligence in the
devices, and let’s face it, most companies that build cheap
devices, don’t bother with even thinking about this.
Unfortunately the centralized approach is not an ideal
alternative, because we may consider that the database
should be known before and this database should be always
on and always accessible. This is not always the case in the
real scenarios, where we may want to have different kinds of
applications that do not have access to all the resources.

 Observers. Let’s suppose we work with static sensors
that are initialized and have all context parameters fixed. In
this case we do not have a changing context, because
nothing changes for any device, except their sensed values.

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 5

 If we want to work with mobile devices for example, or
other kinds of devices that change their parameters, then we
may get in the situation that we cannot address all the
changes in the environment (because it changes too fast) and
we need someone or something that will keep updating the
information for all the mobile devices in our central
repository.
 There are devices and services that can observe the
environment and can advertise changes in it. These devices
or services work under the principle publish/subscribe
(protocol implementations like UPnP or DPWS) and can
provide different kinds of updating information for our
repository of context.
 Therefore, we should subscribe to such services to keep
us informed when elements from the environment change
their context parameters.

 Adaptation. The mechanism of adaptation of the
middleware should address both the infrastructure (devices
or services) and the application that the user is interested in.
To address the changes in the infrastructure one of the most
important aspects of such a mechanism is the filtering, seen
as the process of filtering out the unwanted devices or
services.
 In this way, we consider the infrastructure adaptation as
being a selection and grouping of only the same context
related devices.
 In order to get the same context related devices, we need
to define somehow the context we are interested in. This
context can be called a narrow context because it doesn’t
need to reflect the context model entirely, being just a subset
of the context model.
 For example, we may want to describe that we belong to
a context consisting in only the location, devices type, and
their owner type. From all the devices and the services that
are present in the environment, we consider in “our context”
only the devices that have elements in common with what
we want.
 If we may want to use only the devices that are present in
Room 102, or we may want to use only the devices that have
their type: PDA then we define the context that we are
interested in as having just one element: Room: 102, or type:
PDA. We have defined the notion of our context and its
boundaries; therefore this context is actually the context of
the application.
 We want to see only the devices from Room: 102
because we need to use only these devices, and no other
devices. We want to see only the devices of type PDA
because they offer services that we want to use, and we do
not want the services from other types of devices. In every
case, we take the device’s full context and we compare it
with the context of the application that we defined. If it does
not match, then we filter out that device. Because each
device already has a full context associated with, we can
decide based on what narrow context we define if that
particular device or user is actually what we need.
 As a result, we will filter out all the unwanted devices or
services, and we will obtain a selection of entities of interest
for us. The reunion of these entities that are of interest can
be seen as the relevant infrastructure. It is actually an
infrastructure because it contains the entities that are used to
build higher-level services with, and it is relevant because it
will always keep an up to date list of entities that belong to
our context, reflecting changes in the environment. If some

devices change their context in the environment, the relevant
infrastructure will be up to date considering those changes.
New entities will be added or existing entities will be
removed from the relevant infrastructure to reflect their
belonging to our context or the opposite.
 The relevant infrastructure will consist of entities that
are in our context, and this is actually the first phase of
adaptation. The second concept is called opportunistic and it
is based on the fact that the application can change its
components and links internally in order to provide a
specific service for the user. It can be seen as an
opportunistic approach because it tries to obtain the best
possible configuration in order to provide a specific service.
The application can readapt based on aspects of assembly,
but it needs to consider a relevant infrastructure in order to
obtain the desired result.

 IV. IMPLEMENTATION AND RESULTS

As we have said, for implementing our solution, we have
chosen as support platform the WComp middleware [2], [8]
in order to reuse the existent infrastructure and features
offered by the WComp platform and a special feature called
AoA - Aspects of Assembly.
 We will describe in this section the main part of this
implementation.

 Centralized repository. To avoid some disadvantages
for the cases when networking resources and computing
power is limited, we will consider an approach with a
centralized repository, but only for the current application.
 This makes the database local and not dependent on
other resources available on the network. This local
database approach should consider the fact that a database
model implemented in a structured query language can be
difficult to work with and this local database should be
accessible for reading or editing not necessarily using
complicated mechanisms, but more easily. We have created
an interface that enables us to set the context.

<?xml version="1.0" encoding="utf-16"?>
<ContextDatabase>
<Device Name="Light
(4D891D893F914BC)(http://10.211.55.3:64452/)"
UDN="12345" tag="::Device::">
<node text="Light
(4D891D893F914BC)(http://10.211.55.3:64452/)"
imageindex="-1" tag="::DEVICE::">
<node text="Location" imageindex="-1" tag=""><node
text="Building" imageindex="-1" tag="">
<node text="Floor" imageindex="-1" tag="1"><node
text="Room" imageindex="-1" tag="4" />
</node></node>
<node text="Coordinates" imageindex="-1" tag="">
<node text="Latitude" imageindex="-1" tag="" />
<node text="Longitude" imageindex="-1" tag=""
/></node></node><node text="Type" imageindex="-1"
tag="" />
<node text="Environment" imageindex="-1"
tag=""><node text="Temperature" imageindex="-1"
tag="" />
<node text="Humidity" imageindex="-1" tag=""
/><node text="Ambiance Light" imageindex="-1"
tag="" />
</node><node text="Availability" imageindex="-1"
tag="" />

Figure 4 XML Context database

 Therefore, a local XML database (fig.4) file is seen as a
convenient and easy alternative to any structured query

Volume 49, Number 1, 2008 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 6

language database. The application should consider the
context information as a centralized repository for better
context representation, but also should allow the possibility
for users to use any existing repository. In this case an xml
database file could be exchanged between different users.
 The devices that we want to work with should be
initialized at their first use in the environment. This can be
seen as a registration process.
 After this registration process, the device or service can
be easily associated with context information, and it’s
context information can change over time under the
surveillance of the observers. The registration process is
important because it lets us describe some information
according to the device’s context that we know about (like
the owner, the type of the device, the utility) or any other
static parameters that will be used in the application (like
location for static sensors). This registration needs to be
done only once, and after this, every time the device will
reappear in the network, it will be associated with it’s known
contextual information.

 Observers. There are many intelligent systems that
provide means for notifying if changes have occurred in the
environment.
 For example, we can have a badge reader service that
will provide information for a specific user (what room is he
located in).
 This service should update the context for the user, in the
central repository of the application. This should be done
automatically, but how to define these observers? To define
such an observer mechanism, we need to say: what device
with what service will observe a certain device (or user) to
what contextual element.
 For example in the badge reader case: BadgeReader
Device with Location Service will observe a user and will
modify his Room parameter for that user’s context.

 Filtering. Rules are added with AND or OR as operators
to allow the building of a more complex context of the
application. Suppose we have a professor that will want to
build an application with a video projector device inside the
classroom 202 and it will need also to have in his
application all the PDA’s of the students that are present in
the classroom. He will need to define the context of the
application as: Room: 202 AND Devices Type: PDA. If
there are badge readers that act as observers, any student
that will come inside the classroom, will be observed, and
his device will change it’s context to reflect the new
location.
 The device will be added to the relevant infrastructure,
along with the fixed video projector from the room 202. If
there are students that leave the room, they will also be
observed, and they will be not considered anymore in the
relevant infrastructure. From all the devices that are present
in the school building, he will get only those devices he is
interested in.
 The relevant infrastructure will reflect the context he
defined (the room and the type of devices) and after that, a
set of aspects of assembly are applied and inside the
application we will obtain an assembly of components that
reflect the infrastructure, and have all the links between all
the components. The role of the aspects of assembly was to
make the links and to adapt the application according to the
infrastructure.

V. CONCLUSIONS

 In this paper we have analyzed the problem of context
relevance and we have chosen an approach where the user is
also involved in the relevance control process, which
represents the original aspect of our paper.
 The proposed solution was implemented on the top of
WComp platform that has the great advantage of
discovering dynamically the devices and services available
for a certain user. An easy to use interface let the user the
possibility to choose the services interesting from him
among several existent around him.

ACKNOWLEDGEMENTS

 This research was supported by the project PN II “Idei”
1062 financed by UEFISCSU.

REFERENCES

[1] Abowd, G. D. and Mynatt, E. D. “Charting past, present,
and future research in ubiquitous computing”. ACM Trans.
Comput.-Hum. Interact. 7, 1 (Mar. 2000), 29-58. DOI=
http://doi.acm.org/10.1145/344949.344988, 2000.

[2] Daniel Cheung-Foo-Wo, Jean-Yves Tigli, Stéphane
Lavirotte et Michel Riveill, “Self-adaptation of event-driven
component-oriented Middleware using Aspects of
Assembly” in 5th International Workshop on Middleware
for Pervasive and Ad-Hoc Computing (MPAC), California,
USA, novembre 2007.

[3] Manuel Román, Christopher Hess, Renato Cerqueira,
Roy H. Campbell, Klara Nahrstedt, “Gaia: A Middleware
Infrastructure to Enable Active Spaces”, IEEE Pervasive
Computing, 2002.

[4] Verissimo Paulo, Cahill Vinny, Casimiro António,
Cheverst Keith, Friday, Adrian and Kaiser Jörg. “CORTEX:
Towards supporting Autonomous and Cooperating Sentient
entities.” In: Proceedings of European Wireless 2002
(EW2002), 26-28 February 2002, Florence, Italy, 2002.

[5] Garlan, D.; Siewiorek, D.P.; Smailagic, A.; Steenkiste,
P.; “Project Aura: toward distraction-free pervasive
computing”, Pervasive Computing, IEEE Volume 1, Issue
2, April-June 2002 Page(s):22 – 31, 2002.

[6] http://oxygen.lcs.mit.edu/

[7] Jean-Yves TIGLI, Michel RIVEILL, Gaëtan REY,
Stéphane LAVIROTTE, Vincent HOURDIN, Daniel
CHEUNG-FOO-WO, Eric CALLEGARI, “A middleware
for ubiquitous computing: Wcomp”, Projet RAINBOW,
Rapport de recherché, ISRN I3S/RR–2008-01–FR, January
2008.

[8] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-
Foo-Wo, E. Callegari, and M. Riveill. “WComp Middleware
for Ubiquitous Computing: Aspects and Composite Event
based Web Services”. Annals of Telecommunications (AoT),
64(3-4), Apr. 2009.

