
GeneSIS: Continuous Orchestration and
Deployment of Smart IoT Systems

Nicolas Ferry, Phu H. Nguyen, Hui Song
SINTEF

Oslo, Norway
Email: name.surname@sintef.no

Pierre-Emmanuel Novac,
Stéphane Lavirotte, Jean-Yves Tigli

Université Côte d’Azur, CNRS, I3S
Sophia Antipolis, France

Email: name.surname@unice.fr

Arnor Solberg
Tellu IoT AS

Asker, Norway
Email: name.surname@tellu.no

Abstract—Multiple tools have emerged to support the devel-
opment as well as the continuous deployment of cloud-based
software systems. However, currently, there is a lack of proper
tool support for the continuous orchestration and deployment
of software systems spanning across the IoT, edge, and cloud
space. In particular, there is a lack of languages and abstractions
that can support the orchestration and deployment of software
services across vastly heterogeneous IoT infrastructures. In this
paper, we present a tool supported framework for the continuous
orchestration and deployment of IoT systems, named GENESIS.
In particular, GENESIS enables to cope with the heterogeneity
at each of the IoT, edge, and cloud levels and allows to control
the orchestration and continuous deployment of software systems
that executes across IoT, edge, and cloud infrastructures.

Index Terms—Deployment, model-driven engineering, domain-
specific modelling language, models@run-time

I. INTRODUCTION

Gartner envisions that 21 billion Internet-of-Things (IoT)
endpoints will be in use by 20201, representing great business
opportunities. Until recently, IoT system innovations have
mainly been concerned with sensors, device management, and
connectivity, with the mission to gather data for processing
and analysis in the cloud to aggregate information and knowl-
edge [1]. This approach has conveyed significant added value
in many application domains but does not unleash the full
potential of the IoT2. The next generation IoT systems need
to perform distributed processing and coordinated behaviour
across IoT, edge, and cloud infrastructures [2], manage the
closed loop from sensing to actuation3, and cope with vast
heterogeneity, scalability, and dynamicity of IoT systems and
their environments. This paper addresses them as Smart IoT
Systems (SIS). SIS typically operate in a changing and often
unpredictable environment. The ability of these systems to
continuously evolve and adapt to their new environment is
decisive to ensure and increase their trustworthiness, quality,
and user experience. In particular, there is an urgent need for
supporting the continuous orchestration and deployment of SIS
over IoT, edge, and cloud infrastructures.

1Gartner (January 2017) - http://www.gartner.com/newsroom/id/3598917
2https://ec.europa.eu/digital-single-market/en/internet-of-things
3implying that IoT devices are not only applied for sensing the physical

world, but are also exploited for processing and actuation

In the past years, multiple tools have emerged to support
the building as well as the automated and continuous de-
ployment of software systems with a specific focus on cloud
infrastructures (e.g., Puppet, Chef, Ansible, Vagrant, Brooklyn,
CloudML). However, very little effort has been spent on
providing solution tailored for the delivery and deployment
of applications across the whole IoT, edge, and cloud space
[3]. In particular, cloud and edge solutions typically lack
languages and abstractions that can be used to support the
orchestration of software services and their deployment on
heterogeneous IoT devices possibly with limited or no direct
access to Internet [3].

To address these challenges, we have developed a frame-
work for the continuous deployment of SIS. In this paper, we
present our Generation and Deployment of Smart IoT Systems
(GENESIS) Framework, allowing decentralized processing
across heterogeneous IoT, edge, and cloud infrastructures.
GENESIS includes: (i) a domain-specific modelling language
to model the orchestration and deployment of SIS; and (ii)
an execution engine that supports the orchestration of IoT,
edge, and cloud services as well as their automatic deployment
across IoT, edge, and cloud infrastructure resources. The main
contributions of GENESIS that we present in this paper are
the following:

1) It enables to cope with the heterogeneity across the
IoT, edge, and cloud infrastructures and control the
orchestration and continuous deployment of SIS that
span across this space. Particular focus has been to tackle
challenges imposed by IoT infrastructures that typically
include devices with no or limited access to Internet.

2) Same language and tool are used for the continuous de-
ployment of SIS (including the monitoring and dynamic
adaptation) providing a unique model-based representa-
tion of the SIS for both design- and run-time activities

In the remainder, Section II describes the overall approach
of the GENESIS Framework. Section III presents the GEN-
ESIS Modeling language while Section IV details the sup-
porting execution engine. Section V presents our analyses on
the state of the art of deployment and orchestration approaches
for IoT Systems. Finally, Section VI highlights future research
directions and Section VII concludes our presented work.



II. OVERALL APPROACH

The objective of GENESIS is to support the orchestration
and deployment of IoT systems whose software components
can be deployed over IoT, edge, and cloud infrastructures.
The target user group for our framework is thus mainly
software developers and architects. Figure 1 depicts the overall
GENESIS approach.

Deployable
artefacts

GeneSIS
Continuous
deployment

Running 
system

c1

c2
c3

c1
c1

Arduino
Uno

Virtual Machine
(RAM=8GB, 
CPU=2GHz)

RPI
(RAM=64MB, 
CPU=400MHz)

ThingML Code
Can be dynamically

deployed
and migrated on 

heterogeneous targets

Node-RED container
Can be dynamically

adapted

Black-box 
software
artefact

(e.g., binaries)

.exe

c1

c3

c1
c1

c2

Deployment and monitoring

references between logical deployment components and their implementations 

Fig. 1. Overall GeneSIS approach.

To deploy an application on the selected target environment,
its application components need to be allocated on host
services and infrastructure. More precisely, what needs to
be allocated are the implementations of those components.
This is often referred as deployable artefact [4]. Examples
of deployable artefacts are binaries, scripts, etc. A deployable
artefact can be physically allocated independently to multiple
hosts (e.g., a Jar file can be uploaded and executed on different
Java runtime). As depicted in the top layer of Figure 1, at the
current moment, GENESIS consumes as input three types of
deployable artefacts:

• Blackbox deployable artefact: This refers to deploy-
able artefacts that cannot be modified by GeneSIS (e.g.,
GENESIS can deploy a binary but cannot modify it). Our
framework is agnostic to any development paradigm and
technology, meaning that the developers can design and
implement their blackbox deployable artefact based on
their preferred paradigms and technologies. GENESIS is
also agnostic to any specific business domain.

• ThingML source code: ThingML [5] is a domain
specific language for modelling distributed IoT systems
including the behavior of the distributed components in a
platform-specific or -independent way. From a ThingML
code, the ThingML compiler can generate code in dif-
ferent languages, targeting around 10 different target
platforms (ranging from tiny 8 bit microcontrollers to
servers). This is particularly interesting for GENESIS
as, from a deployment model, the GENESIS execution
engine can identify the host to which a ThingML source

code should be allocated and thus generate code in the
relevant language before compiling and deploying it on
the host. This also provides GENESIS with the ability to
seamlessly migrate or deploy a ThingML program from
one host to another.

• Node-RED container: Using Node-RED, one can build
an application as assembly of components executed in a
Node-RED container, which can be dynamically adapted.
This provides GENESIS with the ability to dynamically
tailor an application to best fit its deployment.

Where and how these deployable artefacts are allocated
is specified in a deployment model. Deployment approaches
typically rely on the logical concept of software artefacts or
components [6]. A deployment model is thus a connected
graph that describes software components along with targets
and relationships between them from a structural perspective
[4]. A deployment configuration or deployment model typi-
cally includes the description of how its software components
are integrated and communicate with each other. This is often
referred to as software composition or orchestration. Software
components represent either the deployable artefact and the
resources on top of which these are deployed.

GENESIS includes: (i) a domain-specific modelling lan-
guage to specify deployment model – i.e., the orchestration
and deployment of SIS across the IoT, edge, and cloud spaces;
and (ii) an execution engine to enact their actual orchestration
and deployment.

Because it is not always possible for the GENESIS exe-
cution engine to directly deploy software on all hosts (tiny
devices do not always have direct access to Internet or even
the necessary facilities for remote access), the actual action
of deploying the software on the device has to be delegated
to a host (e.g., a gateway) locally connected to the device.
The GENESIS execution environment handles this problem
by (i) generating a deployment agent responsible for deploying
the software on the device with limited connectivity and (ii)
deploying it on the host locally connected to the device with
limited connectivity.

In the following sections we present the GENESIS Mod-
elling language before we detail its supporting execution
engine.

III. THE GENESIS MODELLING LANGUAGE

One of the objectives when we developed the GENESIS
Modelling language was to keep it with minimal set of con-
cepts, but still easily extensible. Our language is inspired by
component-based approaches in order to facilitate separation
of concerns and reusability. In this respect, deployment models
can be regarded as assemblies of components. The type part
of the GENESIS modelling language metamodel is depicted
in Figure 2.

In the following, we provide a description of the most
important classes and corresponding properties in the GEN-
ESIS metamodel as well as sample models in the associated
textual syntax. The textual syntax better illustrates the various



Fig. 2. Type part of the GENESIS language metamodel.

concepts and properties that can be involved in a deployment
model, and that can be hidden in the graphical syntax.

A DeploymentModel consists of SISElements. All
SISElements have a name and a unique identifier. In ad-
dition, they can all be associated with a list of properties
in the form of key-value pairs. The two main types of
SISElements are Components and Links.

A Component represents a reusable type of node that
will compose a DeploymentModel. A Component can
be a SoftwareComponent representing a piece of soft-
ware to be deployed on an host (e.g., an Arduino sketch
can be deployed on an Arduino board). A Software-
Component can be an InternalComponent meaning
that it is managed by GENESIS (e.g., an instance of Node-
RED to be deployed on a Raspberry Pi), or an External-
Component meaning that it is either managed by an external
provider (e.g., a database offered as a service) or hosted on
a blackbox device (e.g., RFXCom transceiver). The property
port of a SoftwareComponent represents logical ports
(e.g., port 1880 for Node-RED as depicted in Listing 1). A
SoftwareComponent can be associated with Resources
(e.g., scripts, configuration files) adopted to manage its de-
ployment life-cycle (i.e., download, configure, install, start,
and stop). In particular, there are two main predefined types
of resources: DockerResources (see Listing 1), and SSH-
Resources.

Listing 1. An example of Internal component
1 {

"_type": "node_red",
3 "name": "ControlTemp",

"properties": [],
5 "id": "controltemp",

"id_host": "RaspberryPi2",
7 "docker_resource": {

"name": "a resource",
9 "image": "default",

"command": "",
11 "port_bindings": {

"1880": "1880"
13 },

"devices": {
15 "PathOnHost": "/dev/ttyUSB0",

"PathInContainer": "/dev/ttyUSB0",
17 "CgroupPermissions": "rwm"

}
19 },

"port": ["1880"]
21 }

An InfrastructureComponent provides hosting fa-
cilities (i.e., it provides an execution environment) to
SoftwareComponents. The properties IP and port
represent the IP address and port that can be used
to reach the InfrastructureComponent (see Listing
2). The property isLocal depicts that a local connec-
tion is required to deploy a SoftwareComponent on
a InfrastructureComponent via a PhysicalPort
(e.g., the Arduino board can only be accessed locally via serial
port, see Listing 2).

Listing 2. An example of Infrastructure component
1 {

"_type": "device",
3 "name": "Arduino",

"properties": [],
5 "id": "arduino",

"ip": "127.0.0.1",
7 "port": [],

"physical_port": "/dev/ttyACM0",
9 "device_type": "arduino",

"isLocal": true
11 }

There are two main types of Links. A Hosting depicts
that an InternalComponent will execute on a specific
host. This host can be any Component, meaning that it
is possible to describe the whole software stack required to
run an InternalComponent. A Communication can
be associated with Resources specifying how to configure
the components so that they can communicate with each
other. The property isMandatory of Communication
represents that the SoftwareComponents depend on this
feature (e.g., the service hosted on RaspberryPi2 will not work
if the communication with RFXtrx433E is not properly set up).
The property isController depicts that the Software-
Component associated to the in attribute is controlled by
the other (e.g., all messages going to the Arduino should
pass through the service hosted on RaspberryPi). Finally,



the property isDeployer specifies that the Internal-
Component hosted on the InfrastructureComponent
with the isLocal property should be deployed from the
host of the other SoftwareComponent (e.g., the artefact
to be executed on the Arduino will be deployed from the
RaspberryPi). This property is important as several host may
have a local access to the host with limited Internet access but
only one should run the deployment agent.

IV. THE GENESIS EXECUTION ENGINE

From a deployment model specified using the GENESIS
Modelling language, the GENESIS deployment execution
engine is responsible for: (i) deploying the Software-
Components, (ii) ensuring communication between them,
(iii) provisioning cloud resources, and (iv) monitoring the
status of the deployment.

A. Overall architecture

The GENESIS execution engine can be divided into two
main elements: (i) the facade and (ii) the deployment engine.

The facade provides a common way to programmatically
interact with the GENESIS execution engine.

GENESIS follows a declarative deployment approach. From
the specification of the desired system state, which captures
the needed system topology, the deployment engine computes
how to reach this state. It is worth noting that the deployment
engine may not always compute optimal plans.

The GENESIS deployment engine implements the
Models@Run-time pattern to support the dynamic adaptation
of a deployment with minimal impact on the running
system. Models@Run-time [7] enables to provide abstract
representations of the underlying running system, which
facilitates reasoning, analysis, simulation, and adaptation. A
change in the running system is automatically reflected in the
model of the current system. Similarly, a modification to this
model is enacted on the running system on demand.

Our engine is a typical implementation of the Models@Run-
time pattern. When a target model is fed to the deployment
engine, it is compared with the GENESIS model representing
the running system. Finally, the adaptation engine enacts the
adaptation (i.e., the deployment) by modifying only the parts
of the system necessary to account for the difference and the
target GENESIS model becomes the current GENESIS model.
The deployment engine can delegate part of its activities to
deployment agents running on the field (see Section IV-B for
more details).

In the following subsections, we detail the specific deploy-
ment support that is offered for two InternalComponents
natively supported by GENESIS: the Node-RED and ThingML
components, namely. These are the deployable artefact
presented in Section II, for which classical deployment
approaches do not offer specific support. It is worth
noting that (i) these nodes are represented as regular
InternalComponent and (ii) GENESIS is not bound to
any of them (i.e., GENESIS can be used without these nodes).

1) Node-RED Components – dynamic adaptation of the
application behavior: Node-RED4, an open source project by
IBM, uses a dataflow programming model for building IoT
applications and services. Provided with a visual tool, Node-
RED facilitates the tasks of orchestrating IoT devices, wiring
them up to form an IoT application. More precisely, a Node-
RED application takes the form of one or more flows, which
are composed of a set of nodes and wires. A node is a piece of
software written in JavaScript that typically executes when a
message is received from a wire. Node-RED can run at the
edge of the network because of its light footprint. Thanks
to the large community behind Node-RED, a large set of
Node-RED nodes are available off-the-shelf making it easy
to implement new applications.

The Node-RED Admin API can be used to remotely admin-
ister an instance of Node-RED5. In particular, it enables the
dynamic loading of a flow or the dynamic modification of the
running flow. Node-RED also implements the Models@Run-
time pattern, it is thus possible to add or remove nodes without
modifying the rest of the flow.

When deploying a Node-RED InternalComponent,
GENESIS leverages the Node-RED Admin API in order to
dynamically instantiate the necessary nodes within a flow to
ensure the communications with the rest of the components in
the GENESIS model.

2) ThingML Components – deployment across heteroge-
neous platforms: ThingML is an open source IoT framework
that includes a language and a set of generators to support the
modelling of system behaviours and their automatic derivation
across heterogeneous and distributed devices at the IoT and
edge end. The ThingML code generation framework has been
used to generate code in different languages, targeting around
10 different target platforms (ranging from tiny 8 bit microcon-
trollers to servers) and 10 different communication protocols
[5]. ThingML models can be platform specific, meaning that
they can only be used to generate code for a specific platform
(for instance to exploit some specificities of the platform); or
they can be platform independent, meaning that they can be
used to generate code in different languages.

The deployment of a ThingML InternalComponent by
GENESIS, not only consists in the deployment of the code
generated by ThingML on a specific platform, but also in
the actual generation of this code. The GENESIS deployment
engine proceed as follows. It first identifies the platform
on which the ThingML InternalComponent should be
deployed. Then it consumes the ThingML models attached
to the component and use ThingML to generate the code
for the identified platform. If required, the generated code
is further built and packaged before being deployed. Thanks
to this mechanism, a ThingML InternalComponent can
easily be migrated from one host to another. In other words,
this means that the same ThingML code can be dynamically
migrated from one device and platform to another without

4https://nodered.org
5https://nodered.org/docs/api/admin/methods/



necessarily relying on a virtualization technology for lower
footprint.

B. The GeneSIS Deployment Agent

It is not always possible for the GENESIS execution engine
to directly deploy software on all hosts. Indeed, tiny devices,
for instance, do not always have direct access to Internet or
even the necessary facilities for remote access (in such case,
the access to Internet is typically granted via a gateway) and
for specific reasons (e.g., security) the deployment of software
components can only be performed via a local connection
(e.g., a physical connection via a serial port). In such case,
the actual action of deploying the software on the device has
to be delegated to the gateway locally connected to the device.

The GENESIS deployment agent aims at addressing this
issue. It is implemented as a Node-RED application. We de-
composed the deployment procedure into four steps resulting
in four groups of Node-RED nodes.

a) Code generation nodes: The aim of this type of node
is to generate, from source code or specification languages,
the code or artefact to be deployed on a target device. In the
context of our motivating example, we created a ThingML
compilation node, which consumes ThingML models and
generates code in a specific language. The desired language
is specified as a property of the node (e.g., Arduino sketche
in our example). The code generation is achieved by using
the ThingML compiler. In order to trigger a compilation, code
generation nodes consume as input a start compilation
message. Once the compilation is successfully completed, they
should send a generation success message that in-
cludes the location of the generated code. Finally, a compile
on start property can be set to true enabling to trigger the
compilation when the node is instantiated. By contrast, the
deletion of an instance of the node results in the deletion of
the generated code.

b) Deployment configuration nodes: This type of node
aims at preparing the actual deployment of a software com-
ponent (being generated by 1. or not). This typically consists
in generating configuration files. For instance, we created a
ThingML Docker deployment configuration node that gener-
ates a “docker-compose” file as well as the relevant Dockerfile
files depending on the target device. These nodes typically
consume messages from the code generation nodes – i.e.,
generation success messages that include details about
the location of the artefact to be deployed. The retrieval of such
a message triggers the actual generation of the configuration
file. Once this process is completed, it generates a message
containing the location of both the artefact to deploy and
the configuration files. Removing an instance of configuration
nodes results in the deletion of all the configuration files it has
generated.

c) Deployment nodes: This type of node aims at enacting
the deployment of a software component on a specific target.
In the context of our motivating example, we created an
Arduino deployment node that (i) build and upload an Arduino

sketch on the Arduino board using the Arduino CLI6 and (ii)
install the libraries required for its proper execution. Similarly,
we created a Docker deployment node. These nodes typically
consume messages from the configuration nodes and do not
produce any output. Removing an instance of a deployment
node results in the termination of the deployed software
(e.g., killing a docker container, deploying a dummy Arduino
sketch).

d) Communication nodes: After deployment, it can be
important to communicate with the deployed software arte-
facts, for instance to monitor the status of a deployment.
Communications nodes are regular Node-RED I/O nodes such
as serial port for Arduino board or HTTP requests for REST
services.

The flow of components (a.k.a. nodes) that will form the
deployment agent is dynamically generated and deployed by
the GENESIS deployment engine based on the target host. It
is worth noting that only the deployment node is mandatory
and needs to be deployed on the device locally connected
to the target host. Indeed, compilation and communications
are activities that could be run anywhere on the IoT, edge,
and cloud space. In addition, the other components can be
distributed across different instances of Node-RED.

Thanks to this modularity, components from each of these
groups can be seamlessly and dynamically composed for
different types of deployments.

V. RELATED WORK

For some years now, multiple tools have been available on
the market to support the deployment and configuration of
software systems, e.g., Puppet7, Chef8, CFEngine9. These tools
were first defined as configuration management tools aiming
at automating the installation and configuration of software
systems on traditional IT infrastructure. Recently, they have
been extended to offer specific support for deployment on
cloud resources. Meanwhile, new tools emerged and were
designed for deployment of cloud-based systems or even
multi-cloud systems [8] (i.e., systems deployed across multiple
cloud solutions from different providers) such as CloudMF
[9], OpenTOSCA [10], Cloudify10, and Brooklyn11. Those are
tailored to provision and manage virtual machines or PaaS
solutions. In addition, similar tools focus on the management
and orchestration of containers, e.g., Docker Compose12, Ku-
bernetes13. Opposed to hypervisor virtual machines, containers
such as Docker containers leverage lightweight virtualization
technology, which executes directly on the operating system
of the host. As a result, Docker shares and exploits a lot of
the resources offered by the operating system thus reducing

6https://playground.arduino.cc/Learning/CommandLine
7https://puppet.com/
8https://www.chef.io/chef/
9https://cfengine.com/
10http://cloudify.co/
11https://brooklyn.apache.org
12https://docs.docker.com/compose/
13https://kubernetes.io



containers’ footprint. Thanks to these characteristics, container
technologies are not only relevant for cloud infrastructure but
can also be used on edge devices.

On the other side, few tools such as Resin.io and ioFog
are specifically designed for the IoT. In particular, Resin.io
provides mechanisms for (i) the automated deployment of code
on devices, (ii) the management of a fleet of devices, and (iii)
the monitoring of the status of these devices. Resin.io supports
the following continuous deployment process. Once the code
for the software component to be deployed is pushed to the
Git server of the Resin.io cloud, it is built in an environment
that matches the targeted hosting device(s) (e.g., ARMv6 for
a Raspberry Pi) and a Docker image is created before being
deployed on the target hosting device(s). However, Resin.io
offers limited support for the deployment and management
of software components on tiny devices that cannot host
containers.

In [3], we have conducted an systematic literature review
(SLR) to systematically reach a set of 17 primary studies of
orchestration and deployment for IoT. As for the continuous
deployment tools mentioned before, these approaches mainly
focus on the deployment of software systems over edge and
cloud infrastructures whilst little support is offered for the IoT
space. When this feature is available, it is often assumed that a
specific bootstrap is installed and running on the IoT device.
A bootstrap is a basic executable program on a device, or
a run-time environment, which the system in charge of the
deployment rely on (e.g., Docker engine). Contrary to these
approaches, GENESIS does not rely on a specific bootstrap
but instead leverage common run-time environments such as
Docker, Node.js, SSH.

To the best of our knowledge, none of the approaches and
tools aforementioned have specifically been designed for sup-
porting deployment over IoT, edge, and cloud infrastructure. In
particular, they do not provide support for deploying software
components on IoT devices with no direct or limited access
to internet.

VI. FUTURE WORK

The development and operation of applications running on
IoT devices such as Arduino boards is typically challenging
as it is not always possible to access to the logs or to the
systems output. As future work we plan to extend ThingML
and the deployment of ThingML programs via GENESIS with
the necessary mechanisms to enable the remote debugging of
ThingML programs as well as the runtime monitoring of their
execution flow. One of the requirements should be to minimize
the impact of such monitoring facilities on the performances
of the host device, possibly delegating part of the work to
more powerful resources.

Finally, GENESIS is currently evolving as part of the EN-
ACT H2020 project [11]. During the project, our framework
is being evaluated in the context of three use cases: smart
building, eHealth, and intelligent transport system. In this
context, we will need to extend our framework, enabling
the assimilation of the proper mechanisms for trustworthy

execution of the SIS (e.g., security mechanisms, quality as-
surance, robustness). The language will be extended with the
necessary trustworthiness concepts whilst the execution engine
will enact the deployment of the trustworthiness mechanisms
when necessary. As detailed in Section V, approaches for the
deployment and orchestration of IoT systems typically offer
very little, or even no, support for ensuring or improving the
trustworthiness of the system deployed.

VII. CONCLUSION

In this paper, we have presented how GENESIS leverages
upon model-driven techniques and methods to support the
continuous deployment and orchestration of SIS. The GEN-
ESIS Modelling language support the specification of the
deployment of SIS over IoT, edge, and cloud infrastructure in
a platform-independent or -specific way. The associated execu-
tion engine provides the mechanisms to enact this deployment
and support its dynamic adaptation. Particular focus has been
on supporting deployment on IoT infrastructure, which can
include devices with no or limited access to Internet.

Acknowledgements: The research leading to these results
has received funding from the European Commission’s H2020
Programme under grant agreement numbers 780351 (ENACT).

REFERENCES

[1] IoT 2020 project team in the IEC Market Strategy Board, “IoT 2020:
Smart and secure IoT platform,” IEC White paper, 2016.

[2] A. M. (Ed.), “Cyber physical systems: Opportunities and challenges for
software, services, cloud and data,” NESSI White paper, 2015.

[3] P. H. Nguyen, N. Ferry, G. Erdogan, H. Song, S. Lavirotte, J.-Y. Tigli,
and A. Solberg, “Advances in deployment and orchestration approaches
for iot - a systematic review,” in IEEE International Congress On
Internet of Things (ICIOT), ser. ICIOT’19. IEEE, 2019.

[4] A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Solberg,
M. Wimmer, G. Kappel, and F. Leymann, “A systematic review of
cloud modeling languages,” ACM Comput. Surv., vol. 51, no. 1, pp.
22:1–22:38, Feb. 2018. [Online]. Available: http://doi.acm.org/10.1145/
3150227

[5] B. Morin, F. Fleurey, K.-E. Husa, and O. Barais, “A generative middle-
ware for heterogeneous and distributed services,” in 19th International
ACM SIGSOFT Symposium on Component-Based Software Engineering
(CBSE). IEEE, 2016, pp. 107–116.

[6] A. Dearie, “Software deployment, past, present and future,” in Future
of Software Engineering, 2007. FOSE’07. IEEE, 2007, pp. 269–284.

[7] G. Blair, N. Bencomo, and R. France, “Models@run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[8] D. Petcu, “Multi-cloud: expectations and current approaches,” in Pro-
ceedings of the 2013 international workshop on Multi-cloud applications
and federated clouds. ACM, 2013, pp. 1–6.

[9] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lushpenko, and A. Sol-
berg, “Cloudmf: Model-driven management of multi-cloud applications,”
ACM Transactions on Internet Technology (TOIT), vol. 18, no. 2, p. 16,
2018.

[10] A. C. F. da Silva, U. Breitenbücher, K. Képes, O. Kopp, and F. Leymann,
“Opentosca for iot: automating the deployment of iot applications
based on the mosquitto message broker,” in Proceedings of the 6th
International Conference on the Internet of Things. ACM, 2016, pp.
181–182.

[11] N. Ferry, A. Solberg, H. Song, S. Lavirotte, J.-Y. Tigli, T. Winter,
V. Muntés-Mulero, A. Metzger, E. R. Velasco, and A. C. Aguirre,
“Enact: Development, operation, and quality assurance of trustworthy
smart iot systems,” in International Workshop on Software Engineering
Aspects of Continuous Development and New Paradigms of Software
Production and Deployment. Springer, 2018, pp. 112–127.


