
Contexte et modélisation de l’Environnement
d’Exécution Dynamique d’une application

logicielle

Context and modelization of the Dynamic
Runtime Environment of a software application

Author :
Nicolas Bussière (Master RSD, EPU)

Supervisors :
Stéphane Lavirotte (I3S, IUFM de Nice)

Éric Mathieu (MobileGov)
Jean-Yves Tigli (I3S, EPU)

mailto://bussiere@polytech.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://www.mobilegov.com
http://www.i3s.unice.fr
http://epu.unice.fr
http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com

Abstract
Ubiquitous computing appeared at Xerox PARC twenty years ago [28]. Orig-
inally, applications were done in an ad-hoc style. Things evolved with the ap-
parition of Service-Oriented Architecture and Web Services. Dealing with de-
vices and the implied eventing mechanisms added improvements but also some
associated difficulties. Number of direct interactions can be reduced by introduc-
ing context. We will present mechanisms providing contextual-filtering for both
service discovery and during the following communications.

Acknowledgements
I would like to thank the Rainbow team for having welcomed me and particularly
those who shared the Ubiquarium with me. I address special thanks to Jean-
Yves and Stéphane for having taught me more than a way of working and for
their presence and help especially in some difficult moments.

ii / 45 March - September 2007 Nicolas Bussière

http://rainbow.polytech.unice.fr
http://rainbow.polytech.unice.fr/ubiquarium
http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=ii
mailto://bussiere@polytech.unice.fr

Contents

1 Introduction 7
1.1 From Services to Web-Services for Device 7

1.1.1 Service-Oriented Architecture (SOA) 7
1.1.1.1 Service Characteristics 7
1.1.1.2 Services Collaboration 8

1.1.2 Interoperability of Web Services 8
1.1.3 Service for Hardware . 9

1.1.3.1 Device . 9
1.1.3.2 Service-Oriented Architecture for Device (SOAD) 9
1.1.3.3 Discovery and Publication 9
1.1.3.4 Eventing Mechanism to Increase Reactivity . . . 13

1.1.4 Interoperability of Devices in a Service Oriented Archi-
tecture . 13
1.1.4.1 Universal Plug and Play (UPnP) 13
1.1.4.2 Device Profile for Web Service (DPWS) 14

1.1.5 Conclusion on Services . 14
1.2 Motivation: Relevance of Services 15

1.2.1 Set of Accessible Services 15
1.2.2 Set of “tagged” Services 15
1.2.3 Set of Contextual Relevant Services 16

2 Context Awareness for Services 17
2.1 Context Classification . 18

2.1.1 Interaction Context . 18
2.1.2 Data Context . 19

2.2 Logical Versus Physical . 20
2.2.1 The Logical Approach . 20
2.2.2 The Physical Approach 22

2.3 Direct versus Indirect Context Awareness 23
2.4 Contextual Area . 24
2.5 Towards Contextualized Services 26

Nicolas Bussière March - September 2007 iii / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=iii

3 Contribution 27
3.1 Simplest approach for context-aware devices 27

3.1.1 Contextual discovery . 28
3.1.2 Contextual communication 28
3.1.3 Contextual events . 28

3.2 Extending existing WSD protocols to deal with context 28
3.2.1 Discovery . 28
3.2.2 Method invocation . 29
3.2.3 Events . 29

3.3 Architectural improvements for Contextual WSOAD efficiency . 30
3.3.1 Devices aggregation . 30
3.3.2 Aggregating devices using type 30
3.3.3 Aggregating devices in virtual networks 31

3.3.3.1 Aggregating devices on the localhost address . . 31
3.3.3.2 Aggregating devices on a virtual IP address . . . 31

3.3.4 Context-Aware Bridge Solution 32
3.4 Efficient approach: contextual WSD and device aggregates 33
3.5 Cost Evaluation . 33

4 Conclusion 35
Concepts . 37
Keywords . 38

iv / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=iv
mailto://bussiere@polytech.unice.fr

List of Figures

1.1 Distributed Pull Service Discovery 10
1.2 Centralized Pull Service Discovery 11
1.3 Centralized Push Service Discovery 12
1.4 Distributed Push Service Discovery 12
1.5 WSD stack . 14

2.1 Literal context: a sample glyph (left) can have several meanings
(right) . 17

2.2 Four level architecture and orthogonal services 18
2.3 Common caption for Rey formalism 21
2.4 Presentation involving one speaker and one person in audience . 21
2.5 Presentation with multiple participants 22
2.6 Pointing with hand . 22
2.7 Pointing while holding a pen . 22
2.8 Endo Selection, Exo Selection and Bilateral Selection 25

3.1 Devices aggregation . 30
3.2 Typed solution . 31
3.3 IP solution . 32
3.4 Bridge solution: at left, what we want; at right, what reality

looks like . 33

Nicolas Bussière March - September 2007 v / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=v

vi / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=vi
mailto://bussiere@polytech.unice.fr

Chapter 1

Introduction

We will interest in this document to service-based applications in a ubiquitous
(potentially mobile) computing world. Such application are driven by users
(in its most generic definition as a user can potentially be another application
in case of device-to-device interactions). Each application is running on a
given service infrastructure and has to adapt to the constraints imposed
by this environment. In a mobile world, disconnection can be frequent and
service availability is not a guarantee. To increase robustness and to facilitate
service’s continuity, each basic functional capability thus need to be provided
by more than one unique provider. This induce another problem, if several
services are available to perform a task, the most relevant solution should be
selected.

1.1 From Services to Web-Services for Device
After having recalled the principles of Service-Oriented Architecture and
Web Services, we will explain how these approaches can be helpful to deal
with devices and even heterogeneous devices.

1.1.1 Service-Oriented Architecture (SOA)
Service-Oriented Architectures (SOA) have been created to encourage code
re-use and make Applicationapplications easier to adapt. This is done naturally
as a computer service is aimed to be a representation of a business component.
Each service only focuses on a specific task thus encourage service re-use each
time the same task need to be performed. As it is suggested in the name, SOA
are based on services.

1.1.1.1 Service Characteristics

A service is a software entity which can be invoked, which has a specific
functionality, and a well defined interface. Service provide an abstraction

Nicolas Bussière March - September 2007 7 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=7

layer in the architecture as objects do in object-oriented programming
paradigm. Service granularity is however much more larger for services than
for objects. The encapsulation principle give some freedom in implementa-
tions: a given service can actually be provided by different implementations
as far as the interface is respected; this gives some freedom in the selection
of service provider. Every service is described in a description language
fixed by a service framework. For better reutilisability, extensibility and
dynamicity, services are not hard-linked together to create applications as
it is the case in the functional or object-oriented programming paradigm;
interactions between services are specified independently of the functional code
and handled by the service infrastructure. This is what is called loose cou-
pling.

1.1.1.2 Services Collaboration

Services composing a SOA need to known at least another service to commu-
nicate with (either a real service or a service directory). Although this can
be done statically, SOA were designed to enable some dynamicity in service
interactions. In order to let new services join the architecture dynamically
(at runtime), a service discovery mechanism is needed.

SOA have some advantages but it still remains a problem when trying to
build an application with services coming from different service frame-
works. Incompatibilities have been overcome as we will see in next section by
using some Web Technologies to accomodate with existing heterogeneities.
Afterwards we will focus on devices and their associated difficulties: distributed
service discovery to deal with device mobility and eventing mechanism
increasing applications’ reactivity to changes in devices’ state. Finally, we
will expose in section 1.1.4 an approach combining the advantages of both pre-
vious ones.

1.1.2 Interoperability of Web Services

To enhance interoperability between several services from various SOA infras-
tructure, Web Services were created. Not to be limited to a given program-
ming language, they only specify standards for data representation format
and for distant method invocations. They rely on de-facto standards such as
HyperText Transfert Protocol1 (HTTP) for network communications and
eXtensible Markup Language2 (XML) for data representation.

Since Web Services are inspired from SOA, they are based on description
of the provided services: Web Service Description Language3 (WSDL).
As Web Services are accessible across the Web, the Universal Description
Discovery and Integration4 (UDDI) protocol was created to facilitate web

1http://tools.ietf.org/html/rfc2616
2http://www.w3.org/TR/xml
3http://www.w3.org/TR/wsdl
4http://www.oasis-open.org/committees/uddi-spec/tcspecs.shtml

8 / 45 March - September 2007 Nicolas Bussière

http://tools.ietf.org/html/rfc2616
http://www.w3.org/TR/xml
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/uddi-spec/tcspecs.shtml
http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=8
mailto://bussiere@polytech.unice.fr

service discovery (registered services can be found in a centralized direc-
tory). Finally method invocation are addressed byXML Remote Procedure
Call5 (XML-RPC) for simple procedure (stateless) and Simple Object Ac-
cess Protocol6 (SOAP) for interaction with objects.

Today, theWeb Services Interoperability Organization Consortium7

(WS-I) is coordinating Web Services developments. This organization pro-
vide guidance, recommended practices and supporting resources as a common
base to promote interoperability.

1.1.3 Service for Hardware
Services are limited to the computing virtual world. To diversify their func-
tionnalities, the service architecture can also be applied on devices. As we
will see later on, devices are between the real world and the virtual comput-
ing modelization. Since the real physical world is following its own rules that
devices have to adapt to. This induces some difficulties. Events are needed to
increase reactivity. Discovery protocols also need to be adapted to find a
potentially mobile device in the wideness of the world.

1.1.3.1 Device

We call input/output devices, or simply devices, equipments interacting
with their physical environment. Devices are basically similar to services:
they provide a functionality, a way to access it, and are loosely coupled be-
tween each others. However, keyword[Physical constraints]physical constraints,
also called keyword[Resource Dependency]resource dependency, make them dif-
ferent. A device can appear or vanish at any time. This can be due to real
mobile devices or to specific constraints inherited from the real world such
as an energy saving policy for example. To increase reactivity, device can
use asynchronous communication to notify applications of changes in their
state. This eventing mechanism provide a push mechanism less costly and
more efficient than a polling strategy.

1.1.3.2 Service-Oriented Architecture for Device (SOAD)

Benefits of SOA can be extended to devices management. As we have seen,
there are some similarities, but points have to be extended. We study here
this reunition of SOA and devices worlds. We will present two representative
concepts: discovery and eventing mechanisms.

1.1.3.3 Discovery and Publication

Discovery and publication both helps the bootstraping of any mobile ap-
plication. Without this initial step, no dynamicity would be possible. This

5http://www.xmlrpc.com
6http://www.w3.org/TR/soap
7http://www.ws-i.org

Nicolas Bussière March - September 2007 9 / 45

http://www.ws-i.org
http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=9

would implied that devices and services must be statically known for any appli-
cation to be able to run. Publication is done by service producer, they inform
others of their available services. They can either register to a central server
(yellow pages approach) or advertise themselves by broadcasting periodically on
the network. On the other hand, discovery is done by service consumer which
proactively searches for available services. Contrarily to SOA for which ser-
vice discovery was most of the time assumed by a central service directory,
SOAD prefers decentralized discovery mechanisms not to be dependent
on any infrastructure.

Liscano distinguish 3 kinds of discovery mechanism [17]. Firstly, he present
the Distributed Pull Service Discovery. The main part of the system is
based on service request broadcast messages (step 1 in figure 1.1). Only services
provider compliant to the request answer to the service consumer (step 2) after
what normal communication can take place (step 3).

Figure 1.1: Distributed Pull Service Discovery

This first approach highly rely on a broadcast-enabled network. To deal
with networks for which broadcast is too expensive and to be less dependent
to technology, the second approach depicted (Centralized Pull Service Dis-
covery) is based on a central mechanism. As the previous one, information are
pulled by the consumer when needed. Contrarilly to the distributed version,
queries are addressed to a central repository (figure 1.2 step 1). An example
of such centralized mechanism is the service directory in SOA. The central
repository can either reemit the query but it can also answer directelly if it
already have the information in its local cache. Caching strategy imply that
queries are periodically sent to build a list of available services and moreother
to keep it up to date. If fulfilling queries, services reply to the central reposi-
tory (step 2) rather than to the query initiator. The central place then forward
the answer to the consumer (step 3) and no more interactions are needed with

10 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=10
mailto://bussiere@polytech.unice.fr

the central repository (step 4).

Figure 1.2: Centralized Pull Service Discovery

Last architecture explained by Liscano is the Centralized Push Service
Discovery. As the previous one it is centralized, thus not relying on broadcast-
capability of the underneath network. In the centralized pull mechanism,
the central repository still need to use some kind of broadcasting to discover
services; here the push mechanism really prevent from doing any broadcasting.
Here, each service provider must advertize itself to the repository (first step
in figure 1.3). For the same coherence reason as previously, this has to be
done periodically so that services which are no more available will not be said
available by the repository if they do not exist any more. If the system is fully
based on push mechanism, services are advertized to service consumer
(step 2); if not, service consumer address same queries as in the centralized
pull case. As in all other cases, once discovered, communication are done
directly between producer and consumer.

Nicolas Bussière March - September 2007 11 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=11

Figure 1.3: Centralized Push Service Discovery

Finally, we also have Distributed Push Service Discovery. Although
not presented by Liscano, it is used for example in network routing with the
Border Gateway Protocol (BGP). The principle is derived from the cen-
tralized pull mechanism without any centralization. The central point can
be circumvented if service produce have the possibility to broadcast their adver-
tizement to all potential consumer (figure 1.4, step 1). Each consumer is than
in charge to store received advertisement or to wait until a new advertisement
for a desired producer.

Figure 1.4: Distributed Push Service Discovery

Decentralized systems are best fitted for devices (even more for mobile
devices) which are dynamic by nature. Adaptation to this dynamicity also
contribute to the robustness of the whole infrastructure.

As introduced in section 1.1.3.2, we will now explain how devices can in-

12 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=12
mailto://bussiere@polytech.unice.fr

crease their reactivity with an eventing mechanism.

1.1.3.4 Eventing Mechanism to Increase Reactivity

Synchronous communication mechanism are well fitted for services-based
applications. Devices do not only provide functions, they may also need to
advertise from a modification of their state. Consequently, communications
need to occur in both ways, and may happen when the device needs it, without
an external request. This is a crucial point for the reactivity of the system.

The asynchronous messaging mechanism used by services for devices
is event notification. Consumers interested in receiving events from a device
have to subscribe to them. Services for devices thus have to handle sub-
scriptions along with event sending. Events generally notify changes from
the physical constraints of a device (for example a battery level, a sensor
information change) or for interaction devices, a change in their state (for
example a pressed switch).

1.1.4 Interoperability of Devices in a Service Oriented Ar-
chitecture

Web Service suffer from the same problem than SOA when trying to interact
with devices. Web Services provide mechanism essentially for synchronous
communications, that is why Web Service for Devices (WSD) were intro-
duced. Although keeping the interoperability advantage of the Web Service
approach, WSD also take into account the eventing mechanism introduced
earlier (section 1.1.3.2).

The WSD model (See figure 1.5) has two major implementations: Uni-
versal Plug and Play8 (UPnP) and Device Profile for Web Services9
(DPWS) that we will describe in more details in following sections.

1.1.4.1 Universal Plug and Play (UPnP)

UPnP was firstly created to extend the Plug and Play concept to peripher-
als on a network. It defines device profiles, in a specific language (though
XML), for example for printers, or gateways, which are fixed by the UPnP
Consortium, and implemented by UPnP servers in such lightweight de-
vices. The Simple Service Discovery Protocol10 (SSDP) used by UPnP
permits to discover and search devices on a local IP network, using multi-
cast UDP messages. It can moreover specify a type filter for searches, and
then find only devices or services matching this type. UPnP uses Simple
Object Access Protocol SOAP for classical Web Services requests. The
eventing layer is managed by the General Event Notification Architec-
ture11 (GENA). Subscription to events is required, and leased. However, this

8http://www.upnp.org
9http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf

10http://www.upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf
11http://msdn2.microsoft.com/en-US/library/Aa505982.aspx

Nicolas Bussière March - September 2007 13 / 45

http://www.upnp.org
http://specs.xmlsoap.org/ws/2006/02/devprof/devicesprofile.pdf
http://www.upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf
http://msdn2.microsoft.com/en-US/library/Aa505982.aspx
http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=13

Figure 1.5: WSD Stack

protocol has some drawbacks: events are related to state variables, and must
be defined before use. When a service contains several evented variables, all
their values are sent at once even if only one value has changed.

1.1.4.2 Device Profile for Web Service (DPWS)

Due to the limitations previously exposed for UPnP, and to the non-standard
descriptions and protocols used, the DPWS technology has emerged with an
aim of replacing UPnP. DPWS was created more as a Web Service than
as a plug and play protocol. It is based on Web Services standards, such
as SOAP for data transfers and WSDL for descriptions. This Web Ser-
vices kernel is extended by some WS-* specifications: WS-Discovery12 and
SOAP-over-UDP for peer-to-peer service discovery at a local network
scale, WS-Eventing13 for managing subscriptions for event channels, WS-
Security14 for security, which was cruelly missing with UPnP,
WS-Addressing15 for advanced endpoint and message addressing,
WS-Policy16 for policy rules and exchanges, WS-Transfer17 and
WS-Metadataexchange18 for device and Service description.

1.1.5 Conclusion on Services
Services and more generally SOA have proven their utility in software en-
gineering. The mechanism was developped in two directions to add interop-
erability on one hand (WS) and device handling capability on the other

12http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf
13http://www.w3.org/Submission/WS-Eventing
14http://www-128.ibm.com/developerworks/library/specification/ws-secure
15http://www.w3.org/Submission/ws-addressing
16http://www.w3.org/Submission/WS-Policy
17http://www.w3.org/Submission/WS-Transfer
18http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

14 / 45 March - September 2007 Nicolas Bussière

http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf
http://www.w3.org/Submission/WS-Eventing
http://www-128.ibm.com/developerworks/library/specification/ws-secure
http://www.w3.org/Submission/ws-addressing
http://www.w3.org/Submission/WS-Policy
http://www.w3.org/Submission/WS-Transfer
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=14
mailto://bussiere@polytech.unice.fr

Device handling
software device

Inter- Legacy SOA SOAD
Operability Interoperable WS WSD

Table 1.1: 2-dimentionnal Evolution from SOA to WSD

(SOAD).WSD were introduced to keep the advantages of both previous im-
provements (as defined in table 1.1).

As we can already see in our everyday life, the number of communicating
devices is constantly increasing. One day or another, this could lead to a prob-
lematic situation. In order to limit some of the unnecessary communications
between services, a filtering mechanism need to be used to avoid wasting
network resources and computation time when possible.

1.2 Motivation: Relevance of Services

We had underlined in the previous section that the number of devices was
constantly increasing. This motivate a filtering mechanism to only interact
with service considered relevant in regards to a specific application.

1.2.1 Set of Accessible Services

Most of actual filtering mechanism are based on technology. With WSD,
devices’ communications are limited to the local network on which they
are. With mobile devices, a natural filter is the communication range. These
solutions are not easy adapt to software filtering needs as we can define more
complex applicative filters than just proximity. Since we are extending the
SOA, context should also be loosely coupled to business and technical code.
To be re-usable, the context filtering mechanism should not rely on a specific
technology.

In UPnP for example, all communications are isolated on the local net-
work19. We can thus filter communications based on some network apparte-
nance. However, this solution is technology-dependent and do not facilitate
dynamic evolution of the filters conditions (network address are quite static).

1.2.2 Set of “tagged” Services

As Rey noticed [25], insulated data does not represent a significant value. In
fact each data needs an overheading metadata to describe it. Some metadata
concerns sensors functional capabilities (resolution, latency, sampling rate,
stability, range, covered area, size, autonomy, orientability, calibration data or

19This can be viewed as a negative point, but the local network can be virtually spaned
on multiple site with bridges and Virtual Private Networks (VPN) solutions

Nicolas Bussière March - September 2007 15 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=15

lifetime); other concerns sensed data (precision, quality or stability). In a multi
sensor system, such metadata are useful when aggregating multiple data or to
prune low quality data if another highest quality data is available from another
sensor.

Semantic significations associated to services have been initially specified
in centralized directories. In SOA, some systems can provide various details
on services. For example in Geographic Information System (GIS), ser-
vices are annotated with geographical metada [9]. These approaches are also
sometimes compared to phone books. White pages are used for simple in-
formation searches; yellow pages enables searches based on functionnalities;
green pages provides more technical informations and blue pages [27] gives
more freedom and semantic search capabilities.

Since each application may consider things differently, the filtering mech-
anism should be configurable at the application level and should not rely on
a specific technology. DPWS and UPnP provide some simple mechanisms to
filter devices (of a given “type” and/or in a given “scope”) at discovery time.

1.2.3 Set of Contextual Relevant Services
Most of actual technology enable filtering mechanism that are evaluated only
once at discovery time. Since devices’ state are dynamically evolving (under-
going changes in the environment), the filering condition should checked each
time the concern device’s state changes (or at least periodically). This new
kind of filtering mechanism should determine the communication upholding de-
pending on contextual conditions. Context will be explained in more detail in
next section. We will then present how contextual filtering mechanism can be
implemented in section 3

16 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=16
mailto://bussiere@polytech.unice.fr

Chapter 2

Context Awareness for
Services

Anthropologist Edward T. Hall [10] introduce the term “high context culture”
to qualify non-spoken mean of communication, such as historical or social well-
known facts. Context is here a hidden, implicit channel of communication. We
can view context as all information perceived without having been explicitly
requested.

Etymologically, context comes from the Latin contextus1. Literally, it refers
to the surrounding part of an expression helping in ambiguity resolution. As an
illustration, in mathematics, an horizontal line over a symbol may be a fraction
symbol; it may be part of a complex symbol (a square root, a vector arrow . . .);
it can also be an underlining or a framing mark. Context is answering those
questions (Figure 2.1). As human can do, computers are trying to infer such
context in Optical Character Recognition (OCR) software [15] or more
generally in any lexico-syntactical analyser.

Figure 2.1: Literal context: a sample glyph (left) can have several meanings
(right)

1past participle of contextere: to weave together

Nicolas Bussière March - September 2007 17 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=17

2.1 Context Classification
Schilit, Adams andWant [26] categorized context among three axes. Firstly they
talk about the physical context. Among all contextual data, we have position,
lighting, temperature, noise level. Then they underline the user context. It
includes social consideration such as task at hand or people nearby. Finally
they evoke the computing context. That gathers all computer dependent aspects
(network connectivity, bandwidth, cost, nearby resources, screen size ...). It is
also known as the computing context or as resource-aware computing.
It induces constraints linked to the infrastructure and the availble physical
resources that an application must adapt to. They summarize their approach
with three questions: Where are you ? Who are you with ? and What resources
are nearby ? In [3], Chen and Kotz added time to previous context definition.
They also distinguish active an passive context.

2.1.1 Interaction Context
According to Dey [7], “context is any information that can be used to charac-
terize the situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an application,
including the user and application themselves”. In the Human-Computer In-
teraction (HCI) field, Coutaz, Crowley, Dobson and Garlan handle context in
a four levels architecture [5] (Figure 2.2).

Figure 2.2: Four level architecture and orthogonal services

As in theOpen System Interconnection (OSI) network stack, the low-
est layer (capture layer) is handling the physical data. These raw numeric
observables are transformed in the transformation layer into symbolic ob-
servables as in OSI data link layer where physical data are forming logical
frames. Then comes the identification layer. It can be compared to the pre-
sentation layer of the OSI stack as its role is to identify useful situations
and to forward them to the upper layer. Decisions are made in the application

18 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=18
mailto://bussiere@polytech.unice.fr

layer (OSI) here called adaptation layer. As recent wireless network had
outlined some difficulties of the rigid models2, any layer can short-circuit inter-
mediate layers and have a direct communication with the adaptation layer.
Three others notions are presented: historic service, resource discovery
service (helping fault tolerance) and security. Since this architecture does
not provide solution to include these important aspects, they are left as orthog-
onal services. In fact they are closely linked together. The historic service can
help in fault tolerance. In effect, if communication can be established between
a sensor and an application at a given time, the application may consult the
sensor historic data afterwards and keep running using a local cache memory
and interpolating missing values.

2.1.2 Data Context

Oh, Shin, Jang and Woo present a unified context in [21]. Their approach
consist of specifying answers to the six questions Who? Where? What?
When? How? and Why? This is also known as the 5W1H approach. The
first question tends to identify persons who are using the system. The model
tries to be exhaustive by including all personal data relative to an individual
in his identity. Second question deals with location. Again to be as complete
as possible, all available data are included: a global position and a local position
(such as a room relatively to a building). “What” stands for the service asked by
the previously identified user. Most of the time it is coded as an Uniform Re-
source Identifier (URI). Answering the “When” question will let the system
have some temporal references. Universal time (hard to synchronize among
several mobile device) can be used to have a scheduler view of incoming re-
quests. Relative time informations may also give usefull information on some
task duration for example. Answers to the “How” question may include body
position or medical data such as blood pressure or cardiac rythm. Finally, the
“Why” answers include some user mental aspects’ such as intention or emotional
state. This last part is difficult to describe and thus to sense.

Since sensors are sensible piece of hardware and as they may send erroneous
value, some precaution should be taken in order to achieve long-term reliable
operation. To be able to sense some value even in the case of hardware failure
(fault tolerance), sensors should be at least doubled3. At the other end of
the chain, the consumer application can only handle a single input; there-
fore a component is needed in the middle of this architecture to “glue” parts
together. Such a component is presented in [6] as a Fusion Contextor. The
cited document presents a wide diversity of contextors to facilitate robust ar-
chitecture construction as they are capable of estimate their own Quality of
Service (QoS).

2In Wi-Fi network, when a collision occurs and a packet is lost, standard HTTP mecha-
nisms will ask the source to retransmit the packet thus penalizing all the network, even if the
packet was lost between the last router and the destination.

3if two sensors give different values, a third one might help to determine which of the two
is out of order.

Nicolas Bussière March - September 2007 19 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=19

2.2 Logical Versus Physical

There are two strategy for handling context. The logical approach has a cen-
tralized view of the otherwhole system whereas the physical one is based on
direct interaction between entities without requiring any global infrastruc-
ture.

2.2.1 The Logical Approach

In his PhD [25], Rey presents a complete logical architecture handling context.
The lowest level concept is the observable concept. An observable is a single
data that can be observed. Observables can be grouped together to form
an entity. A task may be dependent on an entity. Two tasks type can
be distinguished: current and background tasks. Current tasks (tasks
at hand) are those on which the user is actually working on. Background
tasks are tasks in a waiting state. An observable modification may lead to a
switch between the two tasks categories. Depending of entities, we can infer
situations. Situations are forming contexts. Every situations of a given
context have the same set of roles and relations. A role is defining a semantic
meaning of an entity’s presence in the application. A relation explicits the
semantic link existing between several entities. Finally, a context network is
a graph of contexts. Within this graph, it is possible to go from a context to
another on apparition/disappearance of role and/or relation. As said by Rey,
this resulting model has been developed to be used in HCI domain with the
goal to be a support tool in the development of new interactions methods.

In HCI domain, one key problem faced with ubiquitous computing
applications is to have a good communication with the end-user. There are
some situations where users can not be disturbed (even if they were, they would
not be attentive [12]). Only information of a certain quality should be given to
the user, otherwise, he would dismiss any kind of information. Some information
might also be deferred for future notifications [11]. This implies that computers
should try to understand users and their action in order to estimate which kind
of information is relevant depending of the situation. The system needs the
user to trust it; otherwise, it will not be able to react correctly. As an example,
if a driver does not trust his car Anti-lock Braking System (ABS) and
does not brake firmly, the braking efficiency will be decreased [4]. In order to
establish a permanent communication between user and computer, interfaces
are undoubtedly going to evolve.

To illustrate Rey’s modelization, we will study a sample situation. The sit-
uation we are going to model is a classical presentation. In such a system,
relevant entities are human beings and a pen (used as a pointer). In reality
others entities exist: a video projector, a computer, a whiteboard but we will
assume they are always present in the presentation room. This is not an un-
realistic assumption and it will simplify the modelization process. As everyone

20 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=20
mailto://bussiere@polytech.unice.fr

knows, a presentation needs the presence of at least two human beings4. Hu-
man can play the roles of speaker or of public. The pen can play the role of a
pointer but a human can also points out something without using the pen, just
with his hand or finger. This outlines each role can be played by one or several
entities. It can also not been played by any entity. When held by a human,
both entities (human and pen) are said in relation. As for role, relations
may or may not be verified. A speaker can present something to an individual
(2.4) or to a wider audience (2.5). During the presentation, anyone can point
out important points with his finger (2.6) or with the pen (2.7).

Figure 2.3: Common caption for Rey
formalism

Figure 2.4: Presentation involving one
speaker and one person in audience

4Here we assume training sessions are not relevant to our modelization

Nicolas Bussière March - September 2007 21 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=21

Figure 2.5: Presentation with multiple participants

Figure 2.6: Pointing
with hand Figure 2.7: Pointing

while holding a pen

2.2.2 The Physical Approach
The physical approach was designed to overcome the logical approach’s draw-
backs. Data are embedded within objects they apply to. Communications are
following the peer to peer (P2P) communication model, which is more ro-
bust and naturally fault-tolerant. The main advantage of this approach is
that it is totally independent of device mobility. If a device is moved, data
automatically follows as they are embedded in the physical object.

According to Pauty, Couderc and Banâtre, the goal to achieve with a phys-
ical approach is to minimize the number of explicit interactions between
man and machine [24]. As users are firstly human being, they already have
activities outside the computing world. Computers can thus help human by au-
tomatically detecting the situations rather than asking users to explicitly enter

22 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=22
mailto://bussiere@polytech.unice.fr

their current situation (current context) on an input device. By giving
more responsibilities to the applications, users can concentrate on their pri-
mary task. To go a little bit further, if no explicit interactions are needed,
device can interact more easily with ther devices as they will not be asked to
take decisions.

As it does not rely on any existing infrastructure, it is best fitted for in the
field operation [23]. However, in such a decentralized system, universal
knowledge is quite impossible to obtain, so that decision are to be taken as
locally as possible. Although the local decision may be taken more rapidly, it
is also taken based on partial information and so can introduce inappropriate
actions due to misinterpretations; but as everything is at a local scale, conse-
quences are not as important as if a mistake was made in the logical approach
as it may have an overall network impact.

The physical approach also has the benefit not to need any routing mech-
anisms as devices simply communicate with other “in range” devices. This can
be illustrated with all system based on tagged objects. Passive-tag can be
viewed as (very) simple device having a unique functionality that is to broadcast
the unique contextual data they have, theirUniversally Unique IDentifier
(UUID). All computation are done by the sensing device (tag-reader), which
react to proximity or to apparition/disappearance of tags. Tags are hereby
defining the tag-reader context.

To illustrate the physical approach, let us have a look to an aircraft safety
mechanism developed to avoid in-flight collisions. The Traffic alert and Col-
lision Avoidance System (TCAS) [19, 18] system is composed of a device
placed in a plane. It has two main goals: detect possible collision and propose
a solution to avoid it. Each plane periodically sends a vector modelling its po-
sition and its trajectory. Each TCAS system listens to incoming messages. If
it computes an intersection between its couple position, trajectory and the data
from the other aircraft, it triggers an alarm in both planes. More than simply
informing them, both devices agree on a safe operation to do on both planes to
avoid the collision. One plane is asked to increase its altitude whereas the other
is asked to decrease its own altitude. Here context is used to increase safety.

The physical approach raises a challenging problem. If multiple applica-
tions need the same information from a unique sensor, direct communication
between consumers and provider (no matter if data are polled or pushed) can
be highly resource consuming. On the other hand, public broadcasting becomes
a problem for security aspects. Thus, data multicasting protocols should to be
both scalable and secured. This difficulty can be overcome more easilly when
considering indirect context awareness rather than direct context awareness.

2.3 Direct versus Indirect Context Awareness

A direct context-aware application is considering context as an input data.
It is handled as if it was a keyboard interactive input [22] or a file read from a

Nicolas Bussière March - September 2007 23 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=23

storage device [20].
Contrarily to a direct context-aware application, an indirect one uses

context at a highest level. Context is used to help service orchestration. De-
pending on context, new services can be instantiated and others may be halted.
Communications between all services of a SOA can be reorganized to adapt to
the context’s modification. The indirect context-awareness is taking place
inside the middleware [8] in opposition to the direct context-awareness case
for whom it take place at the application level. In this approach, context is
compliant to the loose coupling principle of SOA as it is independent of busi-
ness code. Context awareness is thus a general capability of the middleware
orchestraction mechanism and not of each application.

2.4 Contextual Area

Most persons dealing with context-aware computing agree on a point, dis-
tance between two entities is important. In effect, a flying butterfly at the
other side of the Earth is very unlikely to be taken into account for our local
context. Those different granularities have already been outlined in [2]. In the
physical approach, the unified context consist of mapping data directly into
the physical space and to associate a contextual area in which this data will
be accessible [24]. Actually contextual areas’ shapes depend on the commu-
nication technology. It is mostly a sphere with radio transmission; but it can
also be a cone with light communication (IR for example). Previous work on
sentient computing with the Bat system [1] had a similar concept with the
Spatial Monitoring application, but it was based on a logical approach.

In [16, 13, 14], Lavirotte, Lingrand and Tigli underline a key point in cost
functions which is their asymmetric nature. As an illustration, it is easier to
get down of a hill than to climb it up. More formally, it cost more (fuel, time,
energy in general) to get up than to get down although the distance is the same.
This suggests replacing previous symmetric concept of distance functions by
the asymmetric concept of cost functions. On top of that, cost functions
present another advantage: it becomes possible to define precise regions in space
with any arbitrary shape. This is an significant improvement as previous works
in this field were limited to regularly curved shapes (depending on technoloy
aspects such as communication range). As cost functions can be arbitrarily
defined, it leaves the possibility to define any arbitrary shape for contextual
area.

Since cost functions are not any more symmetric, being in one’s contextual
area is not any more a symmetric relation. This means that if T is in C’s
contextual area, C may not be in T’s contextual area (T ∈ Z(C)C ∈ Z(T)).
This let us differentiate three kind of selection mechanisms. The endo-
selection consists of selecting entities that a reference can see in its local
context ({X/X ∈ Z(T)}). On the other hand, the exo-selection is the
selection of all entities that see the reference in their own distant context.
When both selections are verified at the same time (T ∈ Z(C) ∧ C ∈ Z(T)),

24 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=24
mailto://bussiere@polytech.unice.fr

we qualify the relation as an bilateral-selection.
endo(R)={X/X ∈ Z(R)}
exo(R)={X/R ∈ Z(X)}

bilateral(R)={X/X ∈ endo(R) ∩ exo(R)} = {X/X ∈ Z(R) ∧X ∈ Z(R)}
We will now recall an illustration (originally published in [14]) on the clas-

sical museum tour guide case illustrating this approach. We will consider three
visitors A, B and C and a painting T. The endo-selection (Figure 2.8 a)
consists of selecting all paintings visible by each visitor. Here we can see the
problem of visitor C who sees a painting through a wall, such situation may
effectively happen if we only look at the distance between two points without
taking care of obstacles in their line of sight. The exo-selection (Figure 2.8
b) let us know all visitors that may see the painting. In fact, here again we
have more than expected as B is looking in the opposite direction of painting
T. The exo-selection may be useful in contextual discovery to only inform
visitors of things they could effectively see. Finally, when we merge the results
of endo-selection and exo-selection, we obtain the expected result with the
bilateral-selection (Figure 2.8 c).

Figure 2.8:
a) Endo-selection: visitors A and C can see T
b) Exo-selection: T can be viewed by A and B
c) Bilateral-selection: Only A can see T

Nicolas Bussière March - September 2007 25 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=25

2.5 Towards Contextualized Services
Adding contextual capabilities to services need two different adaptations. Ser-
vice discovery is the first mechanism to contextualize but context must also be
checked afterwards to decide if communications should be upholded or not. As
we have seen earlier, devices’ communications are based use eventing mecha-
nism. Eventing subscription need a similar filtering mechanism as the one used
for discovery; events sending should also be contextualized as it is done for clas-
sical communications messages. Contextualization can be done in various ways:
it can be done once or it may need to be coupled to a leasing mechanism. We
will expose our proposed solution to add indirect context-aware capability in
Web Service for Device frameworks

26 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=26
mailto://bussiere@polytech.unice.fr

Chapter 3

Contribution

Although services for devices can be used to discover devices on a local
network in most cases, it would be more relevant to discover devices in the
context of the searcher, as defined in 2. This means that context must be
known at some point, and we get it via devices.

We can thus distinguish two kinds of devices. Firstly, the classical de-
vices are simple devices acting in the system as functional components. Sec-
ondly, some specific devices can provide contextual data. For example, a TV
is a functional component which implements a display device, and a room-
localization device would provide contextual data about it. This way, an ap-
plication or an user will be able to locate TV which are in their context. To
have more compact notations, we will shorten the non-contextual devices (it
can be context-aware or not) by D and the context provider devices by C .
D can rely on one or several C to obtain contextual information and each C
may be used by multiples D . If a C is not used by any D we choose not to
modelize them as if they are not used by any D , they do not play any role in
the application.

One have to know how C are related to D . We put in place an association
table, which associates each D device to a set of C devices. This table has to
be hand-made. There is no way that devices can know how they will be used, in
which context, with which contextual informations or from which devices.
When creating an application from WSD, the table has to be hand-written as
it is different for each application.

Several approaches are possible to deal with context-aware devices. We
will study three of them, from the most simple but expensive, to a cleverer and
more efficient one.

3.1 Simplest approach for context-aware devices

This approach is the simplest way to perform contextual operations towards
WSD. In short, it checks context for every action, which is expensive in term

Nicolas Bussière March - September 2007 27 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=27

of messages and then network bandwidth use. Although not being very
efficient, this solution guarantee that no operation will be done unless context
is each time verified. It will be called case A in the comparison table in 3.5.

3.1.1 Contextual discovery

Context can be used at discovery time to only discover new D in the searcher’s
contextual area. The simplest way is to send a multicast search request for D
, and for all devices responding, invocate a context request on all associated
C using the association table. Then, a device can determine of which devices
it is in the context of, and of which it is not (exo selection).

3.1.2 Contextual communication

Messages should only be exchanged between D if context is correct. Before in-
voking a method on a D device, associated C devices are queried for context
values. If it appears the targetted D device is not anymore in the context,
the method invocation is not made. Another similar device in the context
should be searched.

3.1.3 Contextual events

keywordEvents can be partially contextualized by making a contextual ver-
ification (invoking a specific method to fetch the context on associated C
devices) before the subscription procedure and afterwards by requiring a
leasing mechanism. If the device gets out of the context, at the end of
the lease, the context will be checked again for the re-subscription, and the
subscription will be cancelled.

3.2 Extending existing WSD protocols to deal
with context

Adding context-awareness to existing Web Services can only be done by
adding a mechanism to exchange contextual metadata between devices.
No matter the kind of selection mechanism (endo, exo or bilateral) nor
the place where the selection is done (consumer device, producer device,
third part device), exchanging specific data to handle context induce some
additional cost to existing protocols.

3.2.1 Discovery

In proactive search (like UPnP ssdp:discovery and WS-Discovery Probe),
contextual meta-data can be added to the broadcasted discovery message.
Servers receiving this overloaded message can the proceed to exo context se-
lection (from the searcher point of view), and reply to the search if the searcher

28 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=28
mailto://bussiere@polytech.unice.fr

is in their context. This way, the discovery will only notify from devices for
which exo context is valid, and reduce unneeded messages on the network.

Operation of this kind can also be done for advertisement, the (likeUPnP
ssdp:alive and ssdp:byebye orWS-Discovery Hello and Bye messages) when
joining/leaving the network. Depending of the kind of selection mechanism,
each device can send its contextual data or its contextual evaluation func-
tion φ. Receiving such overloaded messages, clients can proceed to an endo,
exo or bilateral selection of the context for these devices, whithout make
additional context requests.

3.2.2 Method invocation

We have seen that WSD still permit method invocations of original Web Ser-
vices, using SOAP. However, if devices were discovered in the context and if
they are moving or if the application is moving, they may not be in the context
anymore when a method invocation is requested. What we do to ensure this,
is adding contextual informations to method invocation requests. Receiving
this, contextual WSD can choose not to process the request as usual if the
context does not match, and send back an error instead of the return value.

3.2.3 Events

Two approaches can permit contextualized eventing mechanisms. The first
simple solution is to check context during the subscription mechanism. In
order to adapt to a potential evolution of contextual data, the context must
be checked periodically. This can be done in combination with the subscription
leases implemented in WSD.

On the other hand, each event can also be contextualized to improve reac-
tivity and security. Nevertheless, it is not a simple thing to be done. Indeed,
that imposes to know an up-to-date context of the subscribed clients. Such
data can only be known by asking each device to provide it. This mechanism
is a kind of notification of new events; each device still need to retrieve it
and this can be filtered on context. However, such notifications may reveal a
modification in the device state even if the remote device is not in the “good
context”. A quick fix to this unwanted information disclosure is to send
some fake notification. A trade-off should be found between wasting net-
work bandwidth and disclosing information to unauthorized devices. This
trade-off is defined by the proportion of real/fake notification messages.

The principles presented here add context capabilities to generic Web
Service for Device but some improvements can reduce the overhead cost
induced by all the contextual metadata messages exchanges. Some archi-
tectural modification are thus presented in the next section.

Nicolas Bussière March - September 2007 29 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=29

3.3 Architectural improvements for Contextual
WSOAD efficiency

When adding context to existing Web Services for Devices, two strategies
can be adopted. Firstly we can privilege interoperability with existing non
context-aware servers and admit that they can be used in the new system. On
the other hand, if we want to consider security as part of the context, out-of-
context servers must not be discovered and interactions must be restricted to
situations in which the security context is verified.

3.3.1 Devices aggregation

To minimize network communication costs, some devices can be grouped
together. Each of our groups contain one or several D and their associated C .
If a C is used by several D , all will be in the same aggregate as illustrated in
figure 3.1. Statistically, if each aggregate contains several C , context can be
asked only once to the aggregate and not individually to each C . This kind
of batch processing helps in decreasing communications costs induced by the
contextual queries. Aggregates will be noted as case B in the comparison
table in 3.5.

Figure 3.1: Devices aggregation

3.3.2 Aggregating devices using type

keywordDevice Aggregation!Typed Device Aggregation WSD protocols pro-
vide a typed search mechanism which can be used to build new aggregates.
As this is only provided for search, it is not helpful for communication nor
eventing. This is illustrated in figure 3.2

30 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=30
mailto://bussiere@polytech.unice.fr

Figure 3.2: Typed solution

3.3.3 Aggregating devices in virtual networks
Another solution can be built on top of virtual networks; each aggregate is
assigned an unique network address. Therefore, each device have two addresses:
the physical one inherited from its host and the virtual one defining in which
aggregate it belongs.

3.3.3.1 Aggregating devices on the localhost address

We can consider each aggregate as a local network. Each device is thus started
on the localhost network (127.0.0.1) as shown on figure 3.3. This impose a
strict limit of at most one aggregate on each physical host, and the ability to
specify the network interface to be bound to, for services as well as clients.

3.3.3.2 Aggregating devices on a virtual IP address

A simple modification to the previous solution permits multiple aggregates
on the same host. Instead of a localhost IP address, we can give a specific
virtual IP address. This also gives the ability to split an aggregate on
several physical hosts. From a security point of view, this can be viewed as
an open system as the original services can still be accessed on their virtual
IP address without any contextual verifications. An important thing to
consider in this solution is the procedure to assign each virtual address to each

Nicolas Bussière March - September 2007 31 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=31

Figure 3.3: IP solution

device. This configuration of each Web Service IP is not a trivial problem as
it has to be universally unique but also known by every implied service in the
interactions.

3.3.4 Context-Aware Bridge Solution

This solution is apparented to a network DeMilitarized Zone (DMZ). We
authorize service to operate as usual inside the DMZ but we build a strong
barrier around them to protect them from the rest of the world. All communi-
cation with the outside are thus handled in an unique point: the bridge. This
bridge is responsible not to forward messages if the contextual metadata are
absent or invalid.

The desired architecture is shown in figure 3.4 on the left-hand side. Reality
(right-hand side) is a little bit different. The difference has to be underlined as
it reveal a potential security problem. All devices on the right are all member
of the same physical network (illustrated with the widest cloud); nothing can
prevent a malicious device from listening the network and catching data
packets thus bypassing the contextual filtering mechanism.

32 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=32
mailto://bussiere@polytech.unice.fr

Figure 3.4: Bridge solution: at left, what we want; at right, what reality looks
like

3.4 Efficient approach: contextual WSD and de-
vice aggregates

The best approach we can present for contextual WSD handling is using both
features presented in 3.2 and 3.3, protocol modification and device aggrega-
tion. Device aggregation helps in reducing contextual metadata overhead
costs. Protocols need to be adapted firstly to handle context but it can also
be usefull to increase security, as non-context-aware protocols were not
designed to protect contextual privacy for example. This will be the C case of
our comparison table in next section.

3.5 Cost Evaluation

To summarize somehow all contextual WSD approaches we have explained, we
will compare costs in packets number for each operation (discovery, method
invocation and eventing) in table 3.1. We first need to define variables we
will use.

Nicolas Bussière March - September 2007 33 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=33

Case Discovery Invocation on device i Events on device i

Research Context
request Context Invocation Subscription Event

A γ + αN (β1 + β2)K (β1 + β2)τi β1 + β2
(β1 + β2)τi+
β3 + β4

β5 + β6

B γ + αN (β1 + β2)N β1 + β2 β1 + β2
β1 + β2+
β3 + β4

β5 + β6

C γ′ + αrN 0 0 β′
1 + β2 β′

3 + β4 β5 + β6

Table 3.1: Costs of Communication function of Case

We take a set of N devices. In that set we count P D devices, and K C
devices. We can thus write N = P + K. A D device has probably more than
one C device to refer to to get its context, and we note this number τi.

When dealing with aggregated devices, N is the number of aggregates.
They are composed of pi D and optionnaly ki C devices.

In our modelisation, the base unity will be the number of network packets
needed to achieve contextual operations on WSD. Lots of variables depend
on theWSD infrastructure protocol: α, γ, γ′ and all βk and β′

k. γ is the number
of packets used to send a multicast research request, and γ′ is the same thing but
in the case of a contextual research request: they contain context information.
α is the number of packets a WSD uses to respond to such a request. β1 is the
number of packets needed to make a remote method invocation, β′

1 is the same
with context information, β2 is the number of packets for the response. These
numbers are counting communication establishment packets, acknowledgements
at all levels, and connection terminations. β3 is the number of packets needed
for a subscription request, β′

3 for a contextual subscription request, and
β4 is the number of packets of the subscription acceptance or rejection. β5 is
the number of packets used to send an event, and β6 the number of packets used
for the acknowledgement of the event.

We note r the ratio representing the number of devices belonging to the
context of the application (0 ≤ r ≤ 1).

We set the hypothesis that C transmit the complete contextual information
in a unique request packet.

The case A is the one presented in 3.1, the obvious and inefficient one. The
case B is a solution with aggregates, presented in 3.3. Finally, the case C is the
best solution, prensented in 3.4.

Table 3.1 represents communication costs on successfull context matching
in three different context handling cases. If not matching, invocation’s cost
is null for cases A, B, and subscription is not done so β3 + β4 = 0 and there is
no event sent.

34 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=34
mailto://bussiere@polytech.unice.fr

Chapter 4

Conclusion

We have seen that protocols needed to be adapted to handle context. On the
basis of the current standards of Web services, we need to modify existing proto-
cols or specify a new added protocol to deal with context. Moreover such context
aware mechanisms for web services must be implemented in the both discovery
and communication phases on the life cyle of the corresponding web service. In
case of eventing communications, we can notice an interesting similarity with
research and discovery phase.

Indeed subscribing to a devices’ event channel is similar to a publication:
the event consumer publishes its interest in such events. Afterwards, each event
sent should be contextualized as normal communications, the difference being
that sender’s and receiver’s role are exchanged. An interesant thing to notice
from this symmetry is that both selection mode can be used. An endo-selection
filtering mechanism at subscription time implies to have an exo-selection filtering
mechanism when sending an event. The same remains true for the classical
discovery and communications phases. Implementations can send periodically
values of local context (leasing mechanism) to transform an endo (resp. exo)-
selection mechanism into an exo (resp. endo)-selection mechanism, as explained
in this report.

In conclusion, this report is a first step in the investigation to well-defined
and validate a new protocol for context awarness of web services and the cor-
responding applications in the field of the context dependent access to device
for security in collaboration with the spohipolitan MobileGov company. First
results will be communicated in CMMSE Workshop in Lyon at the end of this
year.

Nicolas Bussière March - September 2007 35 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=35

36 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=36
mailto://bussiere@polytech.unice.fr

Concepts

Approaches
Logical Approach, 20
Physical Approach, 22

Bilateral-selection, 24

Centralized Push Service Discovery,
11

Context, 17
Data Context, 19
Interaction Context, 18
Literal Context, 17

Context-Aware Application
Direct Context-Aware Applica-

tion, 23
Indirect Context-Aware Appli-

cation, 24
Contextual Area, 24

Device, 9
Device Aggreation, 30
Device Aggregation

Bridge, 32
Typed Device Aggregation, 30
Virtual Network Device Aggre-

gation, 31
Localhost Network Device Ag-

gregation, 31
Private IP Network Device Ag-

gregation, 31
Device Profile for Web Service (DPWS),

14
Distributed Pull Service Discovery,

10
Distributed Push Service Discovery,

12

Endo-selection, 24
Event Mechanism, 13
Exo-selection, 24

Service, 7
Accessible Services, 15

Relevance of Service, 15
Service-Oriented Architecture (SOA),

7
Service-Oriented Architecture for De-

vice (SOAD), 9

Universal Plug and Play (UPnP),
13

Web Service for Devices (WSD), 13
Web Services (WS), 8

Nicolas Bussière March - September 2007 37 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=37

Keywords

Web Service for Device, 29

abstraction layer, 7
adaptation layer, 19
advertisement, 29
Aggregate, 30
aggregate, 30, 31
aggregated devices, 34
aggregates, 30, 31
Anti-lock Braking System (ABS), 20
Application, 7, 8, 13
application, 18, 27
application layer, 18
Architecture, 8
architecture, 8
association table, 27
Asynchronous Communication, 9

Background tasks, 20
background tasks, 20
Bat system, 24
Bilateral selection, 28
bilateral selection, 29
Bilateral-selection, 25
bilateral-selection, 25
blue pages, 16
Border Gateway Protocol (BGP), 12
bridge, 32
broadcast-enabled network, 10
business code, 24
Business component, 7

capture layer, 18
central repository, 10
central service directory, 10
centralized directory, 9
centralized pull case, 11
centralized pull mechanism, 11, 12
Centralized Pull Service Discovery,

v, 10, 11
Centralized Push Service Discovery,

v, 11, 12
communicating devices, 15

Communication, 13, 15
Asynchronous Communication,

9, 13
Synchronous Communication, 13

communication, 30
Computation time, 15
computing context, 18
Constraint

Physical Constraint, 13
Constraints, 9
constraints, 7
consumer, 10–12
consumer application, 19
consumer device, 28
Context, 15, 17, 28–30

Literal context, v, 17
context, 20, 24, 27–30, 34
context capabilities, 29
context handling cases, 34
context information, 34
context matching, 34
context network, 20
context provider, 27
Context Request, 28
context values, 28
context-aware, 30
context-aware computing, 24
context-aware devices, 27
context-awareness, 28
contextors, 19
contexts, 20
Contextual Area, 28
contextual area, 24
contextual areas, 24
Contextual Communication, 28
contextual data, 23, 27, 29
Contextual Discovery, 28
contextual discovery, 25
contextual evaluation function, 29
contextual filtering mechanism, 32
contextual informations, 27, 29
contextual meta-data, 28

38 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=38
mailto://bussiere@polytech.unice.fr

contextual metadata, 28, 32, 33
contextual metadata messages, 29
contextual operations, 27, 34
contextual queries, 30
contextual subscription request, 34
contextual verification, 28
contextual verifications, 31
contextual WSD, 29, 33
contextualized eventing mechanisms,

29
cost functions, 24
current context, 23
current situation, 23
Current task, 20

decentralized discovery mechanisms,
10

decentralized system, 23
DeMilitarized Zone, 32
description language, 8
Device, 7, 9, 12, 13, 15, 28–30

Device Mobility, 8
Heterogeneous Device, 7
Input/Output Device, 9
Interaction Device, 13
Mobile Device, 9

device, 27, 28, 31, 32
device aggregation, 33
Device Description, 14
device handling capability, 14
device mobility, 22
Device Profile, 13
Device Profile for Web Services (DPWS),

13, 14, 16
device state, 29
Device to Device Interaction, 7
devices, 12, 27–29, 32, 34
devices’ communications, 15
direct context-aware application, 23,

24
direct context-awareness, 24
discover, 13
Discovery

Web Service Discovery, 8
discovery, 29, 33
Discovery Mechanism, 9

Discovery Protocols, 9
distance functions, 24
distant context, 24
Distributed Pull Service Discovery,

v, 10
Distributed Push Service Discovery,

v, 12
DMZ, 32
DPWS, see Device Profile for Web

Services
Dynamicity, 8
dynamicity, 12

Encapsulation Principle, 8
endo, 29
Endo-selection, 25, 28
endo-selection, 24, 25
Energy Saving Policy, 9
entities, 20, 21, 24
entity, 18, 20, 21
environment, 7
Event, 13, 14, 29
eventing, 30, 33
eventing layer, 13
Eventing Mechanism, 8, 9, 13
eventing mechanism, 13
Events, 9
exo, 29
exo context, 29
exo context selection, 28
Exo selection, 28
Exo-selection, 25, 28
exo-selection, 24, 25
explicit interactions, 22, 23
Extensibility, 8
eXtensible Markup Language (XML),

8

fake notification, 29
fault tolerance, 19
fault-tolerant, 22
field operation, 23
Filter

Type Filter, 13
Filtering Mechanism, 15
filtering mechanism, 15, 16

Nicolas Bussière March - September 2007 39 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=39

Functional Programming Paradigm,
8

Fusion Contextor, 19

General Event Notification Architec-
ture (GENA), 13

Geographic Information System (GIS),
16

global infrastructure, 20
good context, 29
green pages, 16

Heterogeneity, 8
high context culture, 17
historic service, 19
host, 31
Human-Computer Interaction (HCI),

18, 20
HyperText Transfert Protocol (HTTP),

8

identification layer, 18
identify, 18
indirect context-aware application,

24
indirect context-awareness, 24
information disclosure, 29
infrastructure, 10, 23
input data, 23
input device, 23
Input/Output Device, 9
Interface, 8
interface, 7
Interoperability, 8, 13, 14
interoperability, 9, 30
IP address, 31

keyword, 30

leasing mechanism, 28
local context, 24
local IP network, 13
local network, 14, 27, 31
localhost, 31
localhost network (127.0.0.1), 31
location, 19
logical approach, 20, 24

Loose coupling, 8, 9
loose coupling, 24

malicious device, 32
metadata, 15, 16
method invocation, 33
mobile application, 9
Mobile Computing, 7
mobile device, 19
mobile devices, 12, 15
multicast UDP messages, 13

Network
Local Network, 15
Virtual Private Networks (VPN),

15
network, 13, 32
network bandwidth, 29
network bandwidth use, 28
network communication costs, 30
Network Resource, 15
non-context-aware protocols, 33
notification, 29
numeric observables, 18

Object-Oriented Programming Paradigm,
8

observable, 20
Observables, 20
Open System Interconnection (OSI)

network stack, 18
Optical Character Recognition (OCR),

17
orthogonal services, 19
OSI, 19
OSI data link layer, 18
OSI stack, 18

Passive-tag, 23
Peer to Peer (P2P), 22
peer-to-peer service discovery, 14
personal data, 19
physical address, 31
physical approach, 20, 22–24
physical data, 18
Physical Environment, 9

40 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=40
mailto://bussiere@polytech.unice.fr

physical network, 32
physical resources, 18
Plug and Play, 13
plug and play, 14
policy rules, 14
Polling Strategy, 9
presentation layer, 18
primary task, 23
producer, 11
producer device, 28
Programming language, 8
Publication, 10
Publication Mechanism, 9
push mechanism, 9, 11

Quality of Service (QoS), 19

Reactivity, 8, 9, 13
reactivity, 29
relation, 20, 21
relations, 20, 21
Relative time, 19
Relevance, 15
relevant, 7, 18, 27
relevant entities, 20
repository, 11
resource discovery service, 19
resource-aware computing, 18
Reutilisability, 8, 15
robustness, 7, 12
role, 18, 20, 21, 27
roles, 20, 21

security, 14, 19, 23, 29–31, 33
security context, 30
selection, 28
selection mechanism, 28, 29
selection mechanisms, 24
sensor, 23
sensors, 19
sensors functional capabilities, 15
sentient computing, 24
Service, 7–9, 13–15

Service Architecture, 9
Service Discovery

Distributed Service Discovery,
8

Service Framework, 8
Service Granularity, 8
Service Infrastructure, 7, 8
Service Interaction, 8
Service Provider, 8

service consumer, 11
Service Description, 14
service directory, 10
Service Discovery, 8
service discovery, 10
Service for Device, 13
service orchestration, 24
service provider, 11
service re-use, 7
service’s continuity, 7
Service-Oriented Architecture (SOA),

7–10, 13–15, 24
Service-Oriented Architecture for De-

vice (SOAD), 15
services, 11, 13
services for devices, 27
services provider, 10
Simple Object Access Protocol (SOAP),

9, 13, 29
Simple Service Discovery Protocol,

13
situation, 18
Situations, 20
situations, 18, 20
SOA, see Service-Oriented Architec-

ture
SOAD, 10, see Service-Oriented Ar-

chitecture for Device
SOAP, 14, see Simple Object Access

Protocol
SOAP-over-UDP, 14
Software Entity, 7
Spatial Monitoring application, 24
SSDP, 13, see Simple Service Dis-

covery Protocol
ssdp: alive, 29
ssdp: byebye, 29
ssdp: discovery, 28
state variables, 14

Nicolas Bussière March - September 2007 41 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=41

Subscription, 13, 14
subscription mechanism, 29
subscription procedure, 28
subscription request, 34
symbolic observables, 18
Synchronous Communication, 13

tag-reader, 23
tagged objects, 23
task, 20
task duration, 19
tasks, 20
tasks at hand, 20
TCAS, see Traffic alert and Colli-

sion Avoidance System
third part device, 28
Traffic alert and Collision Avoidance

System (TCAS), 23
transformation layer, 18
type, 13
typed search mechanism, 30

Ubiquitous Computing, 7
ubiquitous computing applications,

20
UDDI, see Universal Description Dis-

covery and Integration
unified context, 19, 24
Uniform Resource Identifier (URI),

19
Universal Description Discovery and

Integration (UDDI), 8
universal knowledge, 23
Universal Plug and Play (UPnP),

13–16, 28
Universal time, 19
Universally Unique IDentifier (UUID),

23
UPNP, see Universal Plug and Play
UPnP, 14, 29
UPnP Consortium, 13

virtual address, 31
virtual IP address, 31
virtual networks, 31

Web Service, 13, 32

WS-Addressing, 14
WS-Discovery, 14
WS-Eventing, 14
WS-Policy, 14
WS-Security, 14

Web Service Description Language
(WSDL), 8

Web Service for Device (WSD), 15
Web Service for Devices (WSD), 13,

27, 29, 34
Web Services, 8, 9, 13, 14, 28

Web Service Discovery, 8
Web Services (WS), 7, 14, 29
Web Services for Devices, 30
Web Services Interoperability Orga-

nization Consortium (WS-
I), 9

Web Technologies, 8
White pages, 16
Who? Where? What? When? How?

and Why? (5W1H), 19
Wi-Fi, 19
WS, 15, see Web Service
WS-Discovery, 28, 29
WS-Metadataexchange, 14
WS-Transfer, 14
WSD, 15, 27, 30, see Web Service

for Device
WSD Stack, 14
WSDL, 14, see Web Service Descrip-

tion Language

XML, 13, see eXtensible Markup Lan-
guage

XML Remote Procedure Call (XML-
RPC), 9

yellow pages, 16

42 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=42
mailto://bussiere@polytech.unice.fr

Bibliography

[1] Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete Steggles,
AndyWard, and Andy Hopper. Implementing a sentient computing system.
08 2001.

[2] Patrick Brézillon. Hors du contexte, point de salut. page 5, 02 2002.

[3] Guanling Chen and David Kotz. A survey of context-aware mobile com-
puting research. page 16, 11 2000.

[4] Keith Cheverst, Nigel Davies, Keith Mitchell, and Christos Efstratiou. Us-
ing context as a crystal ball: Rewards and pitfalls. page 5, 2000.

[5] Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Con-
text is key, volume 48 of 3. 03 2005.

[6] Joëlle Coutaz and Gaëtan Rey. Foundations for a theory of contextors.
page 22, 2002.

[7] Anind K. Dey. Providing Architectural Support for Building Context-Aware
Applications. PhD thesis, Georgia Institute of Technology, 11 2000.

[8] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware
applications. page 67, 2001.

[9] Jérôme Godard. Modeling and Services for Adaptive Collaborative Delivery
of Annotated Multimedia Resources. PhD thesis, The Graduate University
for Advanced Studies, 03 2005.

[10] Edward Twitchell Hall. Beyond culture. 1976.

[11] Eric Horvitz, Andy Jacobs, and David Hovel. Attention-sensitive alerting.
page 10, 1999.

[12] Scott E. Hudson, James Fogarty, Christopher G. Atkeson, Daniel Avra-
hami, Jodi Forlizzi, Sara Kiesler, Johnny C. Lee, and Jie Yang. Predicting
human interruptibility with sensors: A wizard of oz feasibility study. page 8,
2003.

Nicolas Bussière March - September 2007 43 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=43

[13] Stéphane Lavirotte, Diane Lingrand, and Jean-Yves Tigli. Définition du
contexte: Fonctions de coût et méthodes de sélection. In Proceedings of the
Deuxième Journée Francophone: Mobilité et Ubiquité 2005, pages 9–12,
Grenoble, France, 06 2005.

[14] Stéphane Lavirotte, Diane Lingrand, and Jean-Yves Tigli. A propos du
contexte et des différentes méthodes de sélection associées. Technical report,
I3S - Informatique, Signaux et Systèmes de Sophia Antipolis - UMR 6070,
02 2005.

[15] Stéphane Lavirotte and Loïc Pottier. Optical formula recognition. 1997.

[16] Diane Lingrand, Stéphane Lavirotte, and Jean-Yves Tigli. Selection using
non symmetric context areas. LNCS 3762:225–228, 10 2005.

[17] Ramiro Liscano. Service discovery in sensor networks: An overview.
page 51, 2003.

[18] Carolos Livadas, John Lygeros, and Nancy A. Lynch. High-level modeling
and analysis of tcas. page 11, 1999.

[19] John Lygeros and Nancy Lynch. On the formal verification of the tcas
conflict resolution algorithms. page 6, 1997.

[20] Ian MacColl, Barry Brown, Steve Benford, Matthew Chalmers, Ruth Con-
roy, Nick Dalton, Areti Galani, Chris Greenhalgh, Danius Michaelides,
Dave Millard, Cliff Randell, Tom Rodden, Anthony Steed, Ian Taylor, and
Mark Weal. Shared visiting in equator city. 2002.

[21] Yoosoo Oh, Choonsung Shin, Seiie Jang, and Woontack Woo. ubi-ucam
2.0: A unified context-aware application model for ubiquitous computing
environments. 06 2005.

[22] Jason Pascoe. The stick-e note architecture: Extending the interface be-
yond the user. page 4, 1997.

[23] Jason Pascoe, Nick Ryan, and David Morse. Human-computer-giraffe in-
teraction: Hci in the field. page 10, 1998.

[24] Julien Pauty, Paul Couderc, and Michel Banâtre. Synthèse des méthodes
de programmation en informatique contextuelle. Technical report, 01 2004.

[25] Gaëtan Rey. Contexte en interaction homme-machine : le contexteur. page
127, 2005.

[26] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. page 6, 1994.

[27] Ali ShaikhAli, Omer F. Rana, Rashid Al-Ali, and David W. Walker. Uddie:
An extended registry for web services. pages 85–89, 01 2003.

44 / 45 March - September 2007 Nicolas Bussière

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
http://urn.nicolasbussiere.eu/master07/?p=44
mailto://bussiere@polytech.unice.fr

[28] M. Weiser, R. Gold, and J. B. Brown. The origins of ubiquitous computing
research at parc in the late 1980s. 38(4), 1999.

Nicolas Bussière March - September 2007 45 / 45

http://www.cnrs.fr
http://www.unice.fr
http://epu.unice.fr
http://www.i3s.unice.fr
http://rainbow.polytech.unice.fr
http://www.mobilegov.com
mailto://bussiere@polytech.unice.fr
http://urn.nicolasbussiere.eu/master07/?p=45

	1 Introduction
	1.1 From Services to Web-Services for Device
	1.1.1 Service-Oriented Architecture (SOA)
	1.1.1.1 Service Characteristics
	1.1.1.2 Services Collaboration

	1.1.2 Interoperability of Web Services
	1.1.3 Service for Hardware
	1.1.3.1 Device
	1.1.3.2 Service-Oriented Architecture for Device (SOAD)
	1.1.3.3 Discovery and Publication
	1.1.3.4 Eventing Mechanism to Increase Reactivity

	1.1.4 Interoperability of Devices in a Service Oriented Architecture
	1.1.4.1 Universal Plug and Play (UPnP)
	1.1.4.2 Device Profile for Web Service (DPWS)

	1.1.5 Conclusion on Services

	1.2 Motivation: Relevance of Services
	1.2.1 Set of Accessible Services
	1.2.2 Set of ``tagged'' Services
	1.2.3 Set of Contextual Relevant Services

	2 Context Awareness for Services
	2.1 Context Classification
	2.1.1 Interaction Context
	2.1.2 Data Context

	2.2 Logical Versus Physical
	2.2.1 The Logical Approach
	2.2.2 The Physical Approach

	2.3 Direct versus Indirect Context Awareness
	2.4 Contextual Area
	2.5 Towards Contextualized Services

	3 Contribution
	3.1 Simplest approach for context-aware devices
	3.1.1 Contextual discovery
	3.1.2 Contextual communication
	3.1.3 Contextual events

	3.2 Extending existing WSD protocols to deal with context
	3.2.1 Discovery
	3.2.2 Method invocation
	3.2.3 Events

	3.3 Architectural improvements for Contextual WSOAD efficiency
	3.3.1 Devices aggregation
	3.3.2 Aggregating devices using type
	3.3.3 Aggregating devices in virtual networks
	3.3.3.1 Aggregating devices on the localhost address
	3.3.3.2 Aggregating devices on a virtual IP address

	3.3.4 Context-Aware Bridge Solution

	3.4 Efficient approach: contextual WSD and device aggregates
	3.5 Cost Evaluation

	4 Conclusion
	Concepts
	Keywords

